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Abstract—
Social media platforms provide a lot of conveniences
for people but they can also become a place where hate
speech can be easily spread. Understanding archetypes
of social media users can help us identify and prevent
alarming developments in such situations. In this pa-
per, we apply state-of-the-art machine learning meth-
ods to user profiling, focusing on the emotional clus-
tering of social media users. We employ fine-tuned
BERT model to extract features from Reddit users’
posts, and then cluster the users based on the features
aggregated from their posts. Afterward, we analyze
the clustering results and identify representative emo-
tional attributes of each cluster of users.

1 Introduction

Social media have significant impacts on our society
and people’s daily life. Such impacts can be posi-
tive, but can also be negative, provocative, or even
be manipulated for various purposes. For example,
anonymity on the internet provides convenience for
trolls. Also, without physical confrontation, poten-
tial aggression tends to be magnified on social media.
Even worse, social media can sometimes be manipu-
lated for certain political purposes. Without necessary
intervention, users of social media can be exposed to
detrimental influences, such as hate speech. Through
our work, we want to provide a means, with which
social media users whose behavior demonstrates an
inclination towards emotional provocation can be iden-
tified, so that necessary intervention can be conducted
on time. To this end, our work focuses on discover-
ing the emotional attributes of user groups (clusters),
which can be useful in hate speech intervention and
prevention.
To achieve our goal, we clustered social media user

profiles according to the emotions that they had in their
posts. Our work follows the process shown in Fig-
ure 1. First, we finetuned a BERT model which classi-

fies emotions. Then, we obtained average embeddings
of users’ posts through the model that we finetuned.
Finally, we clustered users based on the embeddings
aggregated from their posts, using K-means algorithm.
Before clustering, dimensionality was also conducted
due to the high dimensionality of our data. Among the
resulted clusters, we observed differences in emotional
attributes. For instance, one cluster demonstrates emo-
tional sensibility while another one shows a certain ex-
tent of aggression in speaking style. Moreover, users
within the same cluster tend to have similar language
styles which enables us to group users accordingly.
The rest of this report is organized as follows. In sec-

tion 2 we introduce backgrounds in key methods and
concepts that are used in our work. Section 3 elu-
cidates the process and methods that we employed.
Different experiments during our work are presented
in section 4, followed by results and discussions in sec-
tion 5. Section 6 concludes our work and suggests
possible directions for future works.

2 Background

2.1 BERT

Transformers [1] architecture started a new era of ma-
chine learning. Researchers built several machine
learning architectures with it, especially in the area
of natural language processing (NLP). One of the best
applications of Transformers is BERT (Bidirectional
Encoder Representations from Transformers) [2]. The
core of BERT is a multi-layer bidirectional Trans-
former encoder that generates contextual embeddings
for input sequences. It aims to understand the mean-
ing of sentences with attention, which means that each
token in the output is connected to every input to-
ken with learnable connection weights. BERT ac-
cepts tokenized inputs with the first token being [CLS]
and the last token being [SEP]. [CLS] token is always
used in classification tasks as an aggregate represen-
tation for sentences. [SEP] is used only to indicate
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Figure 1 Project Workflow.

that the sentence is finished. Furthermore, BERT has
12 hidden attention layers. The outputs of each layer
contain embeddings of all the input tokens, each of
which has 768 dimensions. The pre-trained BERT
model can be further fine-tuned with only one addi-
tional output layer to adapt to a considerable number
of tasks [2]. For each task, the task-specific inputs and
outputs are plugged into BERT and all the parameters
are fine-tuned end-to-end. It achieved state-of-the-art
accuracy by outperforming other models in 11 com-
mon NLP tasks [2].

BERTopic. BERTopic [3] is a topic modeling
framework to discover unknown topics and extract
significant keywords in given data. The pipeline of
BERTopic is as follows. It firstly extracts embed-
dings of input sequences with BERT. Then, it applies
UMAP [4] as a dimensionality reductionmethod to the
hidden embeddings and clusters the resulting vectors
with HDBSCAN [5]. As a final step, it generates topic
representations with the class-based TF-IDF proce-
dure. Experiments show that BERTopic can generate
coherent patterns of languages and exhibits competi-
tive performance in various tasks [3].

2.2 Dimensionality Reduction Methods

The goal of dimensionality reductionmethods is trans-
forming a high dimension dataset into a low dimen-
sion dataset while containing most of the information.
There is a trade-off between the number of dimensions
and the preserved information. Reducing the number
of dimensions can lead to the loss of information to

a certain extent, but it helps to mitigate the curse of
dimensionality. Additionally, visualization, training,
and clustering of low-dimensional datasets are easier
than high-dimensional datasets.

PCA. Principal Component Analysis (PCA) [6] is
a dimensionality reduction method. It extracts the
main feature components (principal components) of
the original data by solving the eigen decomposition
problem. Then it uses them to change the basis of
high-dimensional data and gets the final representa-
tion in the low-dimensional map. The method does
not expect any special conditions on the dataset other
than normalized input features. Thismakes it a general
dimensionality reduction method that can be applied
to any data. The advantages of PCA are that it re-
moves correlated features and speeds up the machine
learning algorithms by reducing the dimension of the
data. However, as PCA is a linear projection of the
high-dimensional data, it tries to preserve large pair-
wise distances in themap, whichmakes it lose the local
structures of the data. Although in some cases people
could successfully obtain good visualization results
via PCA, it turns out that such a property becomes an
obstacle when dealing with non-linear manifold struc-
tures. Thus, for the non-linear manifold structures, we
need non-linear dimensionality reduction techniques
to retain the local structures of the data.

UMAP. UniformManifold Approximation and Pro-
jection (UMAP) [4] is a dimension reduction technique
based on Riemannian geometry, algebraic topology,
and graph layout algorithm. Unlike PCA, UMAP re-
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quires several assumptions about the data. The first
assumption is that the data is uniformly distributed
on a Riemannian manifold, the second one is that the
Riemannian metric is locally constant, and the last one
is that the manifold is locally connected. The algo-
rithm is as follows. It first constructs a graph in the
high-dimensional space that corresponds to the orig-
inal data. Then it finds out a low-dimensional graph
that is the most similar to the high-dimensional one via
optimization within a loop. UMAP preserves more of
the global structure of the data than the methods pro-
posed before [4]. It also has relatively low computa-
tion complexity [4]. However, the authors pointed out
that there exists a considerable amount of uncertainty
regarding the preservation of global structures.

2.3 Clustering Methods

Clustering is the most important task in unsupervised
learning [7]. It is a process of assigning a bunch of
objects into several groups according to distance met-
rics or similarity measurements. A group is usually
called a cluster. Data objects in the same cluster are
expected to be similar to each other and objects among
different clusters are dissimilar. Traditional clustering
methods can be divided into 9 categories [7], in which
clustering based on partition and clustering based on
density are related to our project.

K-means. K-means [8] is one of the most famous
clustering algorithms based on partition. It partitions
objects into 𝑘 clusters 𝐶0, 𝐶1, ..., 𝐶𝑘−1, where each 𝐶𝑖

is represented by the center of cluster 𝑖. A clustering
center is computed by the mean of data points be-
longing to the cluster. The core idea of K-means is
to iteratively update these cluster centers until cer-
tain convergence is met. In every iteration, each
data object is re-assigned to its nearest cluster cen-
ter according to Euclidean distance and cluster centers
will be re-calculated after the assignment. In general,
K-means has relatively low time complexity and high
computing efficiency [9]. The clustering results from
K-means can be easily interpreted by analyzing data
points close to clustering centers. But we need to
set the number of clusters, which is usually hard to
estimate. It is also relatively sensitive to outliers [9].

DBSCAN. In comparison to clustering algorithms
based on a partition, the density-based methods as-
sume that data points in each cluster are drawn from
a specific probability distribution [10] and that the
entire distribution of data objects is a mixture of sev-
eral distributions. While most density-based methods
adopt the assumption of Gaussian distributions, the

density-based spatial clustering of applications with
noise (DBSCAN) [11] allows clusters with different
shapes. Let minPts be the number of neighbors and
𝜖 be a radius. Data objects with more than minPts
neighbors inside the scope of 𝜖 can be considered as
a core point. All neighbors within the radius 𝜖 of a
core point are considered to be in the same cluster as
this core point. Density reachable points are the kind
of points that are within 𝜖 to any core points in the
cluster they belong to. If a point is not density reach-
able from any core point, it is considered noise. The
general idea of DBSCAN is to find core data points
of high density and expand clusters from core points.
DBSCAN is also efficient and can cluster data with
arbitrary shapes. But one disadvantage of it is that it
assumes all clusters have similar densities, which is
not universally applicable.

HDBSCAN. The hierarchical DBSCAN (HDB-
SCAN) [5] was proposed as an extension of DBSCAN
by converting it into a hierarchical clustering method.
Instead of a global radius threshold 𝜖 like in DBSCAN,
HDBSCAN creates a hierarchy tree for all possible 𝜖s
in terms of minPts. As a result, HDBSCAN has fewer
parameters and allows clusters with different densities.

3 Approach

3.1 Datasets

Our datasets1 contain users and their posted texts on
Reddit2. Two variants of Reddit data are employed:
Base Reddit Data and Reddit Data Emotion Subset.
Base Reddit data are Reddit posts collected without
any prerequisite. It includes all Reddit posts during a
certain period. In comparison, the Reddit data emo-
tion subset contains only posts with explicit emotional
words. Statistics of these two datasets are shown in Ta-
ble 1.

Number of Users in Datasets
Base Reddit Data 1722

Reddit Data Emotion Subset 8758
Table 1 Reddit Data Statistics.

1Datasets are provided by Benedikt Reinhard.
2Reddit is an American social news aggregation website. Reg-
istered users can submit content as Reddit posts. They cover
various topics including news, games, movies, etc.
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3.2 User Representations

To enable further processing and analysis, we represent
users with vectors based on their Reddit posts. This
section deals with how we obtain user representations
from the Reddit dataset. Entries in this dataset are
users together with their posts, denoted as tuples (user,
post). In the first step, we finetune a pre-trained BERT
model on the emotion dataset [12] to obtain an emotion
classifier. This classifier will function as a feature
extractor in the following steps.

Data Cleaning and Preprocessing. Reddit data are
noisy due to various types of users and non-plain-text
posts. To ensure data quality and make the emotion
classifier applicable to our dataset, cleaning and pre-
processing steps are applied. During the cleaning pro-
cess, we first remove all entries that have null values,
deleted users, as well as deleted or removed posts,
since they could not provide meaningful information
anymore. Besides, posts from Reddit robots are also
removed. To judge if a post is from a robot, we em-
ploy a list of the most active bots on reddit3 and also
our observations on users with a relatively large num-
ber of posts. Then we consult the preprocessing steps
described in [13] and make further adaptions to pre-
process posts in our dataset. Specifically, all post texts
are firstly converted to lower case. Next, we remove
all Reddit posts containing URLs from our data. To
normalize the posts, all characters that appear more
than twice repeatedly are truncated with only two rep-
etitions. For example, aaaa is replaced with aa. We
also remove the user mentions in the post by detect-
ing the "@" sign. As for emojis, we use the Python
library emoji4 to replace emoji symbols with their
corresponding text. Such that the emotions in posts
are kept as much as possible. Afterward, we use the
langid package5 to filter out non-English posts. At
last, all punctuations and redundant empty spaces are
removed. Duplicate entries with the same users and
the same post texts are deleted. Only posts with more
than 5 words are kept for further processing.

Post Representations. After obtaining clean and
preprocessed posts, we feed them into the finetuned
BERTand represent themwith hidden states. As stated
in [2], the hidden embeddings of [CLS] token can
be used as an aggregate representation for the whole
sentence. We represent each post in our data with the
embeddings of its [CLS] tokens and extract hidden

3https://www.reddit.com/r/dataisbeautiful/comments/9mh3pn/
oc_the_50_most_active_bots_on_reddit_based_on/

4https://pypi.org/project/emoji/
5https://github.com/saffsd/langid.py

vectors of [CLS] from all 12 hidden layers. So each
post is represented by a (12, 768) embedding matrix.

User Aggregation. Since our final goal is to ana-
lyze users, the next step is to aggregate user represen-
tations based on representations of their posts. Various
aggregation ways exist. We choose to average the em-
beddings of posts per user so that all posts are taken
into consideration equally. It is also worth noting that
we only consider users with more than 3 posts in the
dataset. Otherwise, the analysis of some users could
be biased by only a few non-representative posts. So
far, we obtain representations for users, each of which
is a (12, 768) embedding matrix.

Data Normalization. We notice that ranges of dif-
ferent dimensions in user representations have consid-
erable disparity. This might lead to biased outcomes
when applying dimensionality reduction and cluster-
ing methods [14]. For this sake, we standardize the
representation vectors with z-score [15] as follows:

𝑍 =
𝑥 − 𝜇

𝜎
,

in which 𝜇 and 𝜎 are the mean and the standard de-
viation of 𝑥, respectively. Thus, we can equip every
dimension with zero mean and unit variance.

Resulted Data. After all the aforementioned steps,
we achieved the data for further processing. Entries
in this resulted data are denoted by (user, user rep-
resentation at layer 𝑖), where 𝑖 ∈ [0, 12]. The user
representation at layer 𝑖 for 𝑖 ∈ [0, 11] corresponds
to the representations from the 𝑖-th hidden layer of
BERT for different users. We also concatenate all
12 representations for each user and name it as user
representation at layer 12.

3.3 PCA

After data preprocessing, we further perform PCA for
dimensionality reduction in order to mitigate the curse
of dimensionality. We choose the number of principal
components with the help of plots as shown in Fig-
ure 2, taking the layer 5 data as an example. We aim
to preserve around 80% of the variance for all layers
of data, and we also want to use the same parameter
value (the number of components) for all layers other
than the concatenated one to simplify the implementa-
tion. The concatenated layer needs more components
due to a much higher dimensionality than individual
layers. Consequently, we decide to use 50 compo-
nents for individual layers and 150 components for the
concatenated layer.

https://www.reddit.com/r/dataisbeautiful/comments/9mh3pn/oc_the_50_most_active_bots_on_reddit_based_on/
https://www.reddit.com/r/dataisbeautiful/comments/9mh3pn/oc_the_50_most_active_bots_on_reddit_based_on/
https://www.reddit.com/r/dataisbeautiful/comments/9mh3pn/oc_the_50_most_active_bots_on_reddit_based_on/
https://www.reddit.com/r/dataisbeautiful/comments/9mh3pn/oc_the_50_most_active_bots_on_reddit_based_on/
https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
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Figure 2 Plot for Percentage of Variance Explained in terms
of Numbers of Principle Components Based on Layer 5
Data. The 𝑥-axis represents the number of components and
the 𝑦-axis denotes the percentage of variance explained.

3.4 K-means

We use K-means method to perform clustering on the
dimensionality-reduced data, i.e., PCA-transformed
data. To obtain optimal clustering given the num-
ber of clusters, we use k-means++ algorithm [16] for
initialization. The number of clusters (𝑘), was decided
heuristically. We first implement an elbow plot using
the Yellowbrick visualization library from Scikit-learn
to search for the ideal value of 𝑘 (Figure 3). In our

Figure 3 Elbow Plot Based on Layer 5 Data. The 𝑥-axis
of the elbow plot represents the value of 𝑘 , i.e., the number
of clusters, whereas the left 𝑦-axis is the distortion score,
which is essentially the sum of squared errors (SSE, also
called inertia). The relationship between 𝑘 and the dis-
tortion score is represented by the blue line. The Dashed
green line, the value of which is denoted on the right 𝑦-axis,
displays the amount of time needed to train the clustering
model given the value of 𝑘 . The elbow (also called knee
or inflection) point is defined as the local maxima of angle
values as described in [17].

preliminary exploration, we noticed that the cluster-
ing resulting from the number of clusters decided by
the elbow point does not necessarily represent the best
separation in practice, judged by whether each clus-
ter has unique characteristics. This coincides with the
observation that the curve in the elbow plot is smooth,
without an obvious angle. A possible reason for this
phenomenon is that our data is not very clustered, as
suggested by the Yellowbrick document6. Therefore,
instead of choosing a single elbow point, we use the
plot to identify a few consecutive points around the
elbow point, which form a region that is right before
the inertia starts to decrease in a nearly linear manner
as shown in Figure 4. All values of 𝑘 in this region are
taken as candidates for the number of clusters. Having
a range instead of a single point also allows us to use
the same range on all layers given that we relax the
selection of border points to have a common range for
all layers, that is, extend the range at some layers in
order to have a common range. Based on this method,
we decide to take the range of [2, 7] as the number of
clusters (𝑘).

Figure 4 Our Region of Choice for 𝑘 .

We then perform a series of K-means clustering
using Scikit-learn’s K-means method7 on every single
layer of data as well as the concatenated layer; every
layer consecutively takes each of the candidates of 𝑘
as the hyperparameter n_clusters.
The distance metric embedded in the Scikit-learn

K-means algorithm is Euclidean distance. Other pa-
rameters are set as the following: number of initial-
ization: 100; maximum iteration: 400; random state:
42.

6https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
7https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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3.5 Evaluation and Visualisation

Now we have clustering results for each layer of the
data as well as the concatenated one. Each of them in
turn includes 5 different clusterings with the number
of clusters 𝑘 ∈ [2, 7]. To filter out the better perform-
ing candidates for further analysis, we deploy both
silhouette score analysis and clusters visualization.

Silhouette Score. Silhouette score measures both
tightness and separation of the clustering. Therefore,
both the inner-cluster similarity and the inter-cluster
dissimilarity are considered. The score is calculated
for each data point and then averaged for all data points
of the whole dataset and has a range of [−1, 1]. The
closer to 1 the score is, the better the clustering result,
and, vice versa, the closer to -1, the worse [18].
We observed that the higher 𝑘 is, the lower the sil-

houette score, no matter which layer of data we ex-
amined, with 𝑘 = 2 scoring the highest. Thus, in this
specific case, it is not advisable to use silhouette score
to choose 𝑘 . Rather, the silhouette score distinguishes
the performances of clusterings based on different lay-
ers of data for a given 𝑘 . Accordingly, we used the
silhouette score to select the best layer for each value
of 𝑘 .
For each of the clustering results, we compute sil-

houette score as listed in Table 2. Subsequently, for
each value of 𝑘 , we pick the layer with the highest
silhouette score. Layer 11 stands out as the champion
for most of the 𝑘 values other than when 𝑘 = 2, an
exception that favors layer 2.

Table 2 Silhouette Scores of K-means Clustering Results.
Red frames highlight the highest score for each number of
clusters.

Clusters Visualization. Another aid we employ
for clustering result selection is the visualization of

the clusters. We deploy Seaborn and Pyplot for the 2D
and 3D visualization respectively. Using Seaborn for
the 2D was due to the simplicity of showing legends.
To compare the clustering result with the "natural clus-
tering" of the data, we plot the original data (pre-PCA)
with UMAP, colored with the cluster labels obtained
through K-means clustering. This will show whether
clustering by K-means coincides with the natural clus-
tering of the data. If the data points with different
colors are separated by the clusters shown in UMAP,
i.e., the "natural clustering" of the data, the K-means
result is considered good. We use this method to filter
the clustering results to get a smaller set of candidates
for further analysis of cluster characteristics. In the
implementation of UMAP, the random state is set to
42, a number we use for all methods throughout this
project. As for the number of components, we choose
2, which is also the default setting of UMAP model.
Our reason is that we cannot judge the clustering vi-
sualization of higher dimensionality properly.
Because our data have high dimensionality, 2D and

3D plots might not always be able to present cluster
partition well, we also resort to kernel PCA8 for the
visualization. The challenge is that choosing a suitable
kernel is not intuitive, thus we try different kernels
and eventually decide on the poly kernel. We set the
number of components to 3 for the kernel PCAand then
use the 3D projection to visualize the resulted data.
The data points in the plot are colored according the
cluster labels based on the K-means clustering result.
The 3D plot allows us to turn the projection around to
observe the partition of the clustering from different
angles so that we can judge the quality of the partition
better.

Cluster Characteristics Analysis. After filtering
out those better performing clusterings using silhou-
ette score and cluster visualization, we examine the
remaining results closer. Two methods are used in this
phase. 1) Manually checking texts. We first choose
10 aggregated user representations (i.e., 10 users) that
are closest to the centroid of each cluster. Then we
manually check the content of the texts of each user
for emotional expression, meanings, intents, speaking
style, and topics. This way, we can summarise the
characteristics of each cluster. If we cannot find rep-
resentative attributes from the chosen 10 users, we
extend the number of users for analysis. 2) BERTopic.
This is a helpful topic modeling tool to get common
topics from a bunch of texts. We used it to find com-

8https://scikit-learn.org/stable/auto_examples/decomposition/
plot_kernel_pca.html

https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html
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mon topics in users’ texts in each cluster. The first
method contributes more to our final results because
it covers more aspects whereas the second method fo-
cuses solely on conversation topics.

4 Experiments

4.1 Baselines

We considered the following combinations of dimen-
sionality reduction and clustering methods to compare
with our approach.

None/PCA + DBSCAN. Regarding clustering with
DBSCAN, we evaluate results without dimensionality
reduction, and with PCA, respectively. We searched
manually for the best hyperparameters of DBSCAN.

None/PCA/UMAP + HDBSCAN. As for cluster-
ing with HDBSCAN, we evaluated the results without
dimensionality reduction, with PCA and with UMAP,
respectively. To achieve optimal clustering results,
we constructed a loss function, which measures the
clustering results with the help of the probabilities_
attribute of HDBSCAN object9. Besides, we also
added penalties for too large or too small numbers
of clusters and a large number of noise points. We
firstly found reasonable ranges of hyperparameters for
PCA, UMAP, and HDBSCANwith random search via
optimizing the loss function. Then, Bayesian opti-
mization10 was applied to the loss function to search
for the best hyperparameters.
As mentioned in subsection 3.5, we generally used

the silhouette score and visualization to compare clus-
tering results. However, for comparison across dif-
ferent cluster methods, the silhouette score is not
a suitable metric, because the silhouette scores for
density-based clustering results tend to be higher than
those of partition-based methods. Hence, we use vi-
sualization to check the results from DBSCAN and
HDBSCAN. These two methods were first eliminated
afterward because they produce only two types of re-
sults: 1) There are only two clusters; one with the
majority of data points and the other with a small
amount of data. 2) A big portion of data points are
grouped into noise. So we decided on K-means as the
clustering method for further experiments.

9https://hdbscan.readthedocs.io/en/latest/api.html
10http://hyperopt.github.io/hyperopt/

5 Results and Discussion

Based on the evaluation of the K-means results us-
ing silhouette score, layer 11 and layer 2 contain the
best performers. Therefore, we conducted a detailed
analysis regarding the characteristics of both layers,
i.e., layer 2 with 𝑘 = 2 and layer 11 with 𝑘 ∈ [3, 7].
However, the analyses did not support a clear semantic
partition of clusters. Therefore, we resorted to cluster
visualization to select the results. We first picked clus-
tering resultswhoseK-means clusters visualization co-
incides with the UMAP visualization, as described in
the clustering visualization approach in subsection 3.5.
Then we compared the "survivors" to get those hav-
ing better visual partition. Layer 1 (𝑘 = 3, 4, 5, 6),
layer 2 (𝑘 = 3, 4, 5, 6, 7), layer 4 (𝑘 = 3, 4, 5), layer 5
(𝑘 = 3, 4), layer 9 (𝑘 = 3, 4), layer 10 (𝑘 = 4), and
layer 11 (𝑘 = 3, 5) are eventually selected for semantic
analysis as described in the "Cluster Characteristics
Analysis" method in subsection 3.5.
Going through all the steps, Layer 5 with 4 clus-

ters represents the best result, which has the clearest
separation among clusters in terms of cluster charac-
teristics. Users in cluster 0 exhibit sensibility; they
talk more about feelings instead of opinions. Cluster
1 is dominated by rationality; users of this group seem
to be well educated and have their own opinions on
various topics. People in cluster 2 appear positive and
friendly; they express their gratitude openly. Those in
cluster 3 are more straightforward; they swear; their
topics are a mixture of gaming, internet, and virtual
stuff.
This result comes from the Reddit dataset with emo-

tional expressions, so we see more emotional char-
acteristics in the clusters. This is in contrast to the
experiments that we conducted earlier using the gen-
eral Reddit dataset without curation. With the general
Reddit dataset, the clusters are distinguished through
topics, which represent interests rather than emotional
attributes. Our experiments demonstrated that cura-
tion of data might help with the intended user profil-
ing, but this is out of the scope of our experiments. In
addition to cluster characteristics, we performed ker-
nel PCA using the poly kernel to further verify our
result. The outcome further buttresses our decision
for this specific clustering – layer 5 with four clusters.
Figure 5 shows the K-means clusters whereas Figure 6
is the projection of the original (pre-PCA) data using
poly-kernel PCA, colored according to labels from the
K-means clustering. The partition of clusters is very
clear in both visualization. Although there are other
clusterings that have comparable partitions in visual-

https://hdbscan.readthedocs.io/en/latest/api.html
https://hdbscan.readthedocs.io/en/latest/api.html
http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/


8

Figure 5 K-means Clustering Result of Layer 5 Data.

Figure 6 3D Projection of layer5 Original Data Using
Poly-Kernel PCA from Different Angles. Colored with
Cluster Labels According to K-means Result.

ization, we focus on sensible cluster characteristics.
This result is the best combination, with which each
cluster has its unique emotional attributes while the
visual presentation of the clusters is convincing.

We also observed that our data are not very clus-
tered, as can be seen in Figure 5, which is layer 5.
All data points are clustered in a single region with a
rather even density in most areas of the region, except
for the brim. No gap within this region that divides
this single crowd. Other layers of data have the sim-
ilar appearance. This might be the reason why the
density-based clustering method does result in sensi-
ble outcomes. UMAP projection, in our case, presents
the data similarly as in Figure 5, but kernel tricks help.

6 Conclusion and Future Work

In this project, we explored the archetypes of Reddit
users based on their posted texts. As far as we know,
our work is the first to analyze Reddit users with aggre-
gated contextual embeddings of their posts. We repre-
sented Reddit posts with hidden embeddings extracted
from a finetuned BERT. All the post embeddings were
further aggregated per user as user representations.
We then applied dimensionality reduction and cluster-
ing algorithms to user representations. Experiments
were conducted to evaluate different combinations of
dimensionality reduction and clustering methods. The
best results were obtained with dimensionality reduc-
tion with PCA and clustering with K-means. Through
the analysis of clustering results, we successfully sum-
marized 4 different types of users on Reddit.
Although promising results are achieved, we pro-

pose some directions for future improvement and ex-
tension. Firstly, other representation methods for sen-
tences (posts) are worth researching and implement-
ing. For example, averaging all tokens’ embeddings is
another popular way to represent sentences. Sentence
embedding models like Sentence-BERT [19] also ex-
hibits state-of-the-art performance in deriving seman-
tically meaningful sentence embeddings. Besides, due
to the time limit, we only employed the average pool-
ing on post embeddings to aggregate users. As part of
future work, maxing pooling or other more complex
aggregation methods can be applied and evaluated.
We also see some work [20] that made good use of
image categories to cluster users based on their posted
images. Inspired by this, we can expect the emotion
information extracted and classified by the fine-tuned
BERT to bring valuable improvements to the cluster-
ing results. As for the clustering methods, we exper-
imented with two categories of clustering methods,
namely clustering based on partition and density. In
the future, we can also compare the performance of
more kinds of methods, such as Gaussian Mixture
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Models (GMM) which is based on probability. The
last note for future work is that labeling a small sub-
set of users may also provide us with convenience
in choosing suitable clustering methods and evaluat-
ing the clustering results. But of course, this is only
applicable when we possess a clear objective for the
clustering task.
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