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Abstract—In recent years, a lot of techniques for autonomous
driving have already been developed and tested. Current com-
puter vision techniques with onboard sensors can provide satis-
factory object detection, re-identification, and tracking results in
various scenarios. However, it is inevitably limited by perspective
and occlusions. Infrastructure sensors can solve these challenges
because they are more flexible in a matter of perspective,
location, and pose. Therefore, infrastructure-based computer
vision techniques can improve the performance of detection and
tracking in challenging situations. In this paper, recent progress
and state-of-the-art methods for infrastructure sensors-based
3D object tracking methods are comprehensively reviewed. To
further investigate trends in 3D Object Tracking, we have covered
different single object tracking (SOT) and multi-object tracking
(MOT) methods. In addition to methods, we presented AI City
Challenge as a significant competition based on multi object
tracking. We underlined current challenges and anticipated
future trends such as cooperative perception and sensor fusion
methods.

Index Terms—Infrastructure-sensor based Tracking, MCMT

I. INTRODUCTION

The rapid advancement of the transportation system has
increased the efficiency of daily commuting and the movement
of goods. The increase in the number of vehicles in the traffic
comes with several critical issues in terms of efficiency, safety,
and reliability [1] [2]. Taking advantage of improvements in
technology, several sensors on roads can be used in traffic to
automate and observe vehicles. Advanced sensors, wireless
information transfer, and artificial intelligence are enabling
the automation of vehicles. With the infrastructure sensors,
vehicles in the traffic are not only observing the other vehicles
but also other road users such as pedestrians and cyclists.
Different types of sensors installed on infrastructure systems
are capable of detecting traffic conditions in a complicated and
dense traffic environment, which makes Vehicle-to-everything
(V2X) possible. V2X is a way for vehicles to communicate
with vehicles in traffic and every other entity. Some application
areas of sensors are: cameras that can provide high-quality
video data to detect and track different traffic objects such
as vehicles, pedestrians, and cyclists [3]. LiDAR can provide
highly accurate 3D point cloud data to find the precise 3D
location of traffic objects [4]. Infrastructure-based detection
systems have the potential to achieve better object detection
and tracking performance with a large number of sensors and
greater flexibility in terms of mounting height and pose.

This survey report reviews recently published infrastructure-
based object detection and tracking articles & workshops. It

aims to show recent research and innovations. Currently, in AI
City Challenge, the best tracking papers use the tracking-by-
detection paradigm and use traffic rules and zones to match
tracklets also in other benchmarks this trend follows [5], [6],
[7]. Tracking-by-detection is a two-step approach, that starts
with the detection of the object and is followed by tracking,
various methods for detection and tracking are explained in
section V. In March 2022, Bai et al. compared infrastructure-
based detection and tracking methods but it does not include
the newest methods [8]. Our main contribution is to collect and
compare the newest novelty methods in 3D object tracking
with infrastructure sensors. The structure of our survey is
as follows: Mentioning state-of-the-art methods and current
challenges. Continued with explaining and comparing articles
that have proposed different novelties and proven themselves
in certain competitions and conferences, and finally, the con-
clusion.

II. FUNDAMENTALS

To better understand the topic of infrastructure-based 3D
Object Tracking, we first need to start by introducing some
fundamental concepts related to 3D object tracking.

A. 3D Object Detection:

3D object detection serves as the foundation for many
tracking algorithms. In many 3D object tracking algorithms,
object detection is the crucial step before tracking in order
to identify targets. There exist various 3D object detection
methods while nowadays researchers mainly focus on the
popular deep learning-based methods. Categorized by the
inputs, 3D Object Detection can be divided into point cloud-
based and image-based methods. As for point cloud input, the
detector either perform Voxelization [9] or BEV (Bird’s Eye
View) [10] Projection for the upcoming process. While for
image input, the detector can take information from monocular
or multiple cameras. The final step of detection is usually
predicting a 3D Bounding Box, which can be further modified
in the tracking process.

B. Vehicle ReID:

When performing multi-object multi-camera tracking, it
would be a challenge to re-identify the same vehicle appearing
in different cameras at a different time step. As for ReID,
various CNNs [11] can be applied to perform feature extraction
and matching between images from multiple cameras. Another



frontier that ReID is focusing on is the construction of a proper
dataset.

C. 3D Object Tracking:

3D Object Tracking can be performed on LiDARs [12] or
Cameras [11] or both [10]. In a point cloud sequence, 3D
object tracking aims to predict the location and orientation of
an object in the current search point cloud given a template
point cloud. In terms of the number of tracked objects, 3D
object tracking can be also defined as SOT (Single Object
Tracking) and MOT (Multi-Object Tracking). While Multi-
object tracking (MOT) enables mobile robots or autonomous
vehicles to perform well-informed motion planning and navi-
gation by localizing surrounding objects in 3D space and time.

III. RELATED WORKS

Infrastructure-based 3D object tracking methods have also
been studied by other survey papers. For example, Bai [8]
reviews the infrastructure-based object detection and tracking
approaches with an analysis of details in literature, with a
focus on LiDAR-based perception methods. Bai also intro-
duces a classical tracking pipeline, which mainly consists of;
Background Filtering, Clustering, Classification, and Tracking.
After the introduction of LiDAR-based tracking methods, Bai
also summarizes the current datasets, which include general
datasets, roadside datasets, and simulators. At the end of his
paper, he points out that cooperative perception and multi-
sensor fusion should be considered future trends in the field.

Datondji et al. [13], comprehensively discussed camera-
based 3D tracking methods. In this paper, the authors first
give an introductory overview of general vision-based ve-
hicle monitoring approaches. Subsequently, they present a
review of studies regarding vehicle detection and tracking
in intersection-like scenarios. Then, they focus on camera-
based roadside monitoring systems, with special attention to
omnidirectional setups. Finally, they present some research
directions which are likely to improve the performance of
vehicle detection and tracking at intersections.

IV. DATASETS

In this part, we will make some brief introductions to the
datasets that will be mentioned in the methods of tracking,
with further information in Table I.

A. KITTI

The KITTI dataset [14] is currently the largest computer vi-
sion algorithm evaluation dataset in the world for autonomous
driving scenarios and the pioneering multi-modal dataset
providing dense point clouds from a LiDAR sensor. This
dataset is used to evaluate the performance of computer vision
techniques such as visual odometry, 3D object detection, and
3D tracking in the vehicle environment.

B. Waymo

The Waymo dataset [15] contains a large number of high-
quality, manually annotated 3D ground truth bounding boxes
for the LiDAR data, and 2D tightly fitting bounding boxes
for the camera images. All its annotations were created and
subsequently reviewed by trained labelers using production-
level labeling tools. Using, and selecting the test set scenes
from a geographical holdout area will allow the user to
evaluate how well models that were trained on the dataset
generalize to previously unseen areas.

C. NuScenes

NuScenes [16] represents a large leap forward in terms
of data volumes and complexities and is the first dataset to
provide 360◦ sensor coverage from the entire sensor suite.
It is also the first multi-modal dataset that contains data from
nighttime and rainy conditions, with object attributes and scene
descriptions in addition to object class and location. It enables
research on multiple tasks such as object detection, tracking,
and behavior modeling in a range of conditions.

D. DAIR-V2X

DAIR-V2X dataset [17] is the first large-scale, multi-
modality, multi-view dataset for VICAD (Vehicle-
Infrastructure Cooperative Autonomous Driving). The
dataset covers 10 km of city roads, 10 km of highway, 28
intersections, and 38 km2 of driving regions with diverse
weather and lighting variations with annotations.

E. MS coco

MS coco (Microsoft Common Objects in Context) [18]
is a large-scale image dataset with annotations you can use
to train machine learning models to recognize, label, and
describe objects. MC COCO provides the following types of
annotations: Object detection, Captioning, Keypoints, “Stuff
image” segmentation, Panoptic and Dense pose.

F. CityFlow

CityFlow [19] is the largest-scale dataset in terms of spatial
coverage and the number of cameras/videos in an urban
environment. Camera geometry and calibration information are
provided to aid Spatial-temporal analysis. In addition, a subset
of the benchmark is made available for the task of image-based
vehicle re-identification (ReID).

G. CityFlowV2

CityFlowV2 [19] has the same validation as the test set
of the original CityFlow dataset. This dataset contains 3.58
hours (215.03 minutes) of videos collected from 46 cameras
spanning 16 intersections in a mid-sized U.S. city. The distance
between the two furthest simultaneous cameras is 4 km.
The dataset covers a diverse set of location types, including
intersections, stretches of roadways, and highways. The dataset
is divided into 6 scenarios. 3 of the scenarios are used for
training, 2 are for validation, and the remaining 1 is for testing.
In total, the dataset contains 313931 bounding boxes for 880
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Name Year View Image Pointcloud Boxes Classes
KITTI [14] 2012 single vehicle 15k 15k 200k 8

Waymo Open [15] 2019 single vehicle 1M 200k 12M 4
NuScenes [16] 2019 single vehicle 1.4M 400k 1.4M 23

DAIR-V2X [17] 2021 vehicle-infrastructure cooperative 71k 71k 1.2M 10
MScoco [18] 2014 - 328k - - 80(objects)+91(stuff)
CityFlow [19] 2019 Multiple-camera 3.25 hours videos - 314k -

CityFlowV2 [19] 2021 Multiple-camera 3.25 hours videos - 314k -

TABLE I: commonly used datasets categorized by features

distinct annotated vehicle identities. Only vehicles passing
through at least 2 cameras have been annotated. The resolution
of each video is at least 960p and the majority of the videos
have a frame rate of 10 FPS. Additionally, in each scenario,
the offset from the start time is available for each video, which
can be used for synchronization.

V. METHODS OF SINGLE AND MULTIPLE OBJECT
TRACKING

In this part, we will introduce several recently proposed
methods for object tracking and their novelties. Though in the
AI City Challenge 2021&2022 most of the top-ranked papers
are focusing Multi-Target tasks, to make sure that the coverage
of the articles is more comprehensive, we will introduce both
single and multiple target tracking methods.

A. LiDAR Single Object Tracking

LiDAR is used more often for target detection, for its data
mainly includes point clouds, depth maps, etc. Yet the point
cloud model is of great significance for target tracking. From
this point, although the practical value and application of
single-target tracking technology are not as good as other
tracking technologies nowadays, the technology of single-
target tracking using LiDAR is still developing in recent years.

For example, PTTR (Point Tracking Transformer) [12] is a
novel 3D point cloud tracking model that efficiently predicts
high-quality 3D tracking results in a coarse-to-fine manner
with the help of transformer operations. The methodology
of PTTR contains three parts: feature extraction, feature
matching, and coarse-to-fine tracking prediction. Firstly, both
search point clouds and template point clouds are fed into
the feature extraction part, which is based on a Point-Net++
[20] backbone. However, the D-FPS (Distance Farthest-Point
Sampling) [20] strategy used in PointNet++ tends to generate
uniformly-distributed sample points, which often leads to
important information loss during the sampling process. To
minimize information loss, a novel Relation Aware Sampling
strategy is put forward and has proven to show significant ad-
vantages over the traditional sampling strategy. Secondly, the
feature matching part would process the data by exploiting a
novel Point-Relation Transformer Module. The Point-Relation
Transformer Module is based on a Relation Attention Module
and it performs a self-attention operation and cross-attention
operation, which generate a coarse prediction. Thirdly, the
prediction refinement part focuses on generating the final
prediction by processing coarse predictions. This part involves
an offset operation, local pooling, and catenating matched

features with pooled features. The PTTR model is tested
on the KITTI [14] dataset. However, since KITTI [14] has
only a limited size, the author constructs a novel Waymo
SOT Dataset [12] based on the Waymo [15] Open Dataset,
which dataset is of a significantly larger scale with a more
balanced class distribution than KITTI. In terms of success and
precision (two metrics that are adopted), the PTTR model has
shown significantly lower computational complexity with an
incredibly lightweight design and has outperformed previous
state-of-the-art methods in both KITTI [14] and Waymo SOT
Dataset [15].

Another method for Single Object Tracking that is worth
mentioning is called Motion-Centric Paradigm, which also
concentrates on performing Single Object Tracking with Li-
DAR sensors. A novel motion-centric paradigm is proposed
in this method to provide a brand-new insight into solving
3D single object tracking problems. The proposed method
distinguishes itself from the well-known traditional Siamese
paradigm, which emphasizes appearance matching techniques
and faces down-grade performance when encountering tex-
tureless and incomplete 3D LiDAR point clouds. These short-
comings could to some extent be avoided by the motion-
centric paradigm. The main novelty of this method is the whole
motion-centric paradigm including an M2–Track [21], which
is a two-stage tracker. The detailed description of the paradigm
(and also the tracker) is demonstrated as follows: First of all,
similar to a data-preprocessing step, target segmentation with
spatial-temporal learning takes previous 3D bounding boxes
and point clouds as input, and produces target point clouds
as output. Secondly, the M2-Tracker reaches stage 1, which is
called “Motion-Centric BBox Prediction” using a multi-layer
perceptron algorithm. At this stage, the tracker can get the
current target BBox (Bounding Box). Thirdly, the M2-Tracker
reaches its second and final stage, which is named” BBox
Refinement with Shape Completion”, this process is based on
an original novel motion-assisted shape completion strategy.
As the output of the second stage, we’re getting a regressed
RTM (Relative Target Motion) and a refined current bounding
box (βt). As for Datasets, the model is tested based on
KITTI [14], NuScenes [16], and WOD [15]. The results show
that compared with previous paradigms such as SC3D, P2B,
and BAT, the M2-Track shows better performance in terms
of two evaluation metrics (both success and precision). It’s
interesting that this method further demonstrates the possibility
of combining the motion-centric paradigm with the traditional
appearance matching paradigm, which shows incredible po-
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tential for the improvement of tracking performance. The
authors believe that the motion-centric paradigm can serve
as a primary principle to guide future architecture designs.
The general pipeline of LiDAR-based object tracking is shown
in Fig.1. As we can see from the figure, a typical LiDAR-
based object tracking method takes a 3D point cloud as the
input, and go through data pre-processing, feature extraction,
preliminary results generation, and post-processing step. In the
end, a refined prediction is made.

Fig. 1: Pipeline for the LiDAR-based object tracking.

B. LiDAR Multi-Object Tracking

As mentioned in the above section, LiDAR achieves rel-
atively good performance on SOT (Single Object Detection).
Despite that, researchers manage to exploit LiDARs to conduct
tracking in MOT (Multi-Object Tracking). For instance, after
receiving input from the 3D point cloud, Weng [22] uses
a straightforward combination of a 3D Kalman-Filter [23]
and the Hungarian Algorithm for state estimation and data
association. His method became the state-of-the-art 3D MOT
performance on KITTI [14] and nuScenes [16] in 2020. How-
ever, the 3D Kalman-Filter method [22] was quick overtaken
by some deep-learning-based methods. One of the most out-
standing deep-learning-based methods is the CentrePoint [24],
a two-stage tracking model put forward by Yin in 2021. As we
know, typical backbones like VoxelNet [25] and PointPillars
[26] convert 3D point cloud input into a map-view feature
map. Yin’s model takes the map-view feature map as input
and predicts a 3D bounding box based on object centers.
The first stage of CentrePoint is to answer ”where are the
center point and 3D bounding box?” It exploits a 2D CNN
architecture detection head to find object centers and predict
3D bounding boxes with center features. The second stage is
to answer this question: “how confident is my prediction and
how can I refine it?” Following [27], Yin passes them into
a Multi-Layer Perceptron to predict a confidence score w.r.t
each 3D bounding box. At last, he trains the model with L1
loss to gain box refinement. CentrePoint became the state-of-
the-art 3D MOT performance on the nuScenes dataset [16]
in 2021, which was then overtaken by fusion-based methods,
which fuse the input from both LiDAR and camera, to achieve
better tracking performance.

C. Fusion-Based Multi-Object Tracking

With their competitiveness in combing advantages from
LiDARs and Cameras, fusion-based methods have recently
taken up top positions on tracking leaderboards. Especially on
the nuScenes [16] tracking dataset, the fusion-based method
has become the state-of-the-art method. As an early fusion-
based method, EagerMOT [28] adopts a two-stage data as-
sociation module. First, they associate data from different
sensor modalities. Second, they manage to update track states
even when only partial information is provided. With the two-
stage data association method, their model has been proven
to be more robust to false negatives resulting from different
sensor modalities. EagerMOT achieved great performance on
both KITTI [14] and nuScenes [16] tracking datasets and
outperformed some LiDAR-based MOT methods such as the
aforementioned CentrePoint [24]. Outperforming EagerMOT,
AlphaTrack [7], which was published on IROS (International
Conference on Intelligent Robots and Systems) 2021. The
main novelty of AlphaTrack consists of two parts: 1. A cross-
modal fusion scheme is proposed to fuse the camera appear-
ance feature with the LiDAR feature to facilitate 3D detection
and tracking. 2. An additional branch is attached to the 3D
detector, which leads to significant improvement in tracking
performance. Different from previous methods, AlphaTrack
fully exploits appearance and location information to perform
joint 3D object detection and tracking, outperforming previous
models such as PointNet [29]. The general pipeline of Fusion-
Based Tracking is shown in Fig.2. Depending on when to fuse
the data, we can categorize it to be erarly fusion, deep fusion
and late fusion.

Fig. 2: Pipeline for the Fusion-Based Multi-Object Tracking.

D. Multi Camera Multi Object Tracking

Multi-Camera Tracking Multi-Target (MCMT) is a very
popular but also challenging task due to unreliable object
detection, heavy occlusion, low resolution, and varying light-
ing and viewing-perspective conditions. For vehicles, this task
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becomes more challenging because;
I. Vehicles may stop for a long time at the traffic signs
and continually be occluded among each other, which makes
occlusion even more severe;
II. Inter-class similarity for vehicles is higher because there
may exist many different identities with a similar appearance.
In the following parts, we will introduce several methods that
are proposed for AI City Challenge and their novelty to the
MCMT problem. The general pipeline of Multi-Camera Multi-
Object tracking is also shown in Fig.3. As shown in the figure,
a general pipeline of Multi-Camera Multi-Object Tracking
should consist of four parts: Object Detection, ReID, Single-
Camera Multi-Target Tracking, and Cross-Camera Trajectory
Association. The following methods all follow similar proce-
dures as in the general pipeline.

Fig. 3: Pipeline for the Multi-Camera Multi-Object Tracking.

1) Spatial-Temporal Filtering: Regarding the topic, the first
method that we introduce [11] puts forwards a system that
concentrates on the task of 3D object tracking using multiple
sensors. The sensors used in this method are cameras instead
of LiDARs. The methodology of this multi-camera vehicle
tracking system consists of three steps: object detection on
the video frame, multi-object tracking on a single camera,
and feature matching under multiple cameras according to
spatial and temporal information. The detailed process is as
follows: After the preprocessing stage of object detection on
a video frame, the system performs multi-object tracking on
a single camera based on DeepSORT [30], which is a well-
known detection-based tracking paradigm. Then the process of
vehicle re-identification is executed, including a CNN model
(based on ResNet [31]) to obtain features of appearance
and a training model using aggregation loss. After vehicle
re-identification, the system reaches it is last stage, feature
matching with multiple cameras, by proposing a novel low-
cost MCMT strategy, with the assistance of a spatial filter and
a temporal filter.
The novelty of this method lies in three parts; 1: It proposes
a powerful vehicle ReID model which is robust against spe-
cific conditions. 2: It puts forwards a novel time-GPS-fusing
strategy that significantly improves accuracy by cross-camera
vehicle matching. 3: It proposes a novel technique to filter the
optimal frame to avoid mismatching between cross-cameras.

As for the datasets, the backbone networks are pretrained by
COCO [18] and ImageNet [32]. Besides, the system is tested
on training and evaluation data from AI City Challenge 2021
Track 3. Experiments are conducted w.r.t different sub-tasks:
MTSC, Query Image Selection, Vehicle ReID, and MCMT, all
showing reliably satisfying results. This system was ranked 6th
on the leaderboard of AI City Challenge 2021.

2) Box-Grained Reranking Matching: The next method for
MCMT is called Box-Grained Reranking Matching [5]. As
already mentioned, the main challenges of the MCMT are
heavy occlusion and appearance variance caused by various
camera perspectives and congested vehicles, they proposed a
practical framework for dealing with city-scale MCMT tasks.
This framework consists of four modules.

The first two modules are vehicle detection and ReID
feature extraction. The location of all vehicles and extraction
of the appearance features for all cameras is done in these two
modules. They used the state-of-art object detection framework
Cascase-RCNN [33]. Feature Pyramid Network (FPN) [34] is
followed by backbone to increase semantic features informa-
tion at each level in the extracted features. They trained this
model with COCO [18] pretrained weights and data of track1
2022 AI City Challenge. They used ensemble of HRNet [35],
ResNeXt101 [36], ResNet [31], Res2Net [37] and ConvNeXt
[38] as backbone for ReID training.

The third module is Single-Camera Multi-Target tracking
(SCMT). In this module, tracking multiple vehicles to generate
candidate trajectories within each camera according to the
detected boxes and extracted appearance features. They use the
tracking-by-detection paradigm. They adopt the classic tracker
DeepSORT [30] as their baseline method and improved its
various techniques. DeepSORT uses the Kalman filter [39]
& Hungarian algorithm [40] combination. In order not to
miss potential targets, they set thresholds of filter detection
results as BYTETrack [41] does. One of the problems is
the velocity of the cars changes sharply, the Kalman filter
is unable to predict correct states. To solve frequent track
ID switches, they refine the tracking results with offline re-
link. Furthermore, They run the tracker on the video frames
one time in the forward direction, one time in the backward
direction, and merge the tracked targets to generate complete
trajectories, the recall can be further improved. The fourth
module, Inter-Camera Association (ICA) is to associate all
candidate trajectories between two successive cameras using
the K-reciprocal nearest neighbors algorithm, and combine
all successively matched trajectories for final results. There
are several challenges in this module, vehicles with similar
appearances in the matching pool of tracklet candidates, the
different locations of cameras, and some objective factors
like illumination, and perspective. They propose a novel box-
grained matching module to find the same identities at the box
level successively and sequentially. This module contains sev-
eral methods, Firstly, ‘Zone-based Tracklet Candidates Filter’
is to roughly filter out tracklet candidates with traffic rules,
road structures, and traveling time. Secondly, ‘Box-grained
Distance matrix Construction and Optimization’ is to calculate
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the box-grained distance matrix. Third, ‘Tracklet Association
with k-reciprocal Nearest Neighbors’ is used for associating
tracklets between two connected zones with the distance ma-
trix D. They propose a novel and effective matching strategy
to find all the convincing pairs. All tracklets are associated
with the principle of k-reciprocal nearest neighbors. Lastly,
‘Post-processing after matching’ is to check the validity of all
matched pairs and assign a global id if the two pairs share the
same tracklet. The proposed method is tested on the public test
set of the 2022 AI City Challenge Track1. It achieves IDF1
of 84.86%, ranking 1st on the leaderboard.

3) Multi-Camera Vehicle Tracking System: The next
method for the MCMT task is a Vehicle Tracking System.
[42]. This is an accurate system that is composed of 4 parts.

The first part is State-of-the-art detection and re-
identification models for vehicle detection and feature ex-
traction. They followed the tracking-by-detection paradigm
and used the state-of-the-art network YOLOv5 [43], which
pretrained on the COCO dataset [18] and they tune the
detection classes to only cars, trucks, and buses. For the ReID
part, they used the ensemble model of ResNet50-IBN-a [31],
ResNet101-IBN-a [31], and ResNeXt101-IBN-a [31] which
was pretrained on the CityFlow dataset [19].

The second part is Single camera tracking, where they intro-
duce augmented tracks prediction and multi-level association
method on top of the tracking-by-detection paradigm. They
followed Simple Online and Realtime Tracking (SORT) [44]
and improved it with various methods. Firstly, Kalman Filter
often produces ID switches when the direction of movement
changes. To improve it, they utilized two more Single Object
Tracking (SOT), Efficient Convolution Operators (ECO) [45]
and MedianFlow [46], and propose an augmented tracks pre-
diction method. Then they include vehicle appearance features,
which then go through a feature dropout filter and a multi-level
matching process. Finally, to make sure the completeness of
tracklets, they added another post-process for tracklet merging
within a single camera.

Third part is Zone-based single-camera tracklet merging
strategy [Fig 4]. To select tracklets, they divide crossroad
images into 9 effective zones and 1 traffic zone, which can
be determined by specific cases. Before merging, They pick
some tracklets under the criteria:
- Tracklet that starts normally and ends in either the same zone
or middle zone.
- Tracklet that starts in either the middle zone or traffic zone.
These tracklets are thought to be abnormal and will become
candidates for merging. From there, these candidates will go
to tracklet merging in the next step. They cope with abnormal
tracklet fragments using hierarchical clustering. The clustering
to get tracklets under the same cluster:
1. Sort tracklets by their starting frame in ascending order.
2. Check if two tracklets agree with space and time.

Using the above techniques, tracklets fragments can be
selected and merged under the same cluster, yielding more
accurate tracklet results for single-camera tracking.

The last part is the Multi-camera spatial-temporal matching

Fig. 4: Crossroad images are divided into 9 effective zones to
enable the singe-camera tracklet merging strategy. [42]

and clustering strategy. Their approach consists of selection,
aggregation, and clustering steps. The cosine similarity matrix
is used in multi-camera matching. They used the GPS location
of each camera, and they simplified their proposed zones. They
also take speed limits and traffic light signals into account.
For the tracklet clustering, they proposed two rounds, the first
round is directional based and the second round is to aggregate
together the same vehicles from adjacent cameras. They also
proposed an iterative searching strategy that effectively solves
the edge cases like U-turns. The proposed method is tested on
the public test set of the 2022 AI City Challenge Track1. It
achieves IDF1 of 84.37%, ranking 2nd on the leaderboard.

4) Space-Time-Appearance Features: The following [47]
MTMCT method consists of object detection and re-
identification (ReID), single-camera tracking, cross-camera
trajectory association.

For the detection task, they used the YOLOv5x1 [43] model
which is pre-trained on the COCO dataset. As for the ReID
task, they retrain the models as their ReID feature extractor
following the work proposed by Luo et al. Two challenges are
considered and addressed in this method: (1) low-confidence
objects could be missed without extra data annotation, and
(2) precise association of trajectories from different cameras
is affected by multiple factors. For the first challenge, a
cascaded tracking method based on detection, appearance
features, and trajectory interpolation is proposed, exploiting
potential real targets in low-confidence objects to improve
detection and identification recall. ByteTrack [41] is a state-of-
art method that mines the real target from the low confidence
box sufficiently to improve the tracking performance. They use
a cascaded matching strategy. First, associate the high confi-
dence box with ReID features, then the unmatched trackers
are associated with boxes by IoU. Lastly, they match the low
confidence boxes with IoU to enhance the stability of tracking.
The Kalman filter [39] is used for track updating.

For the second challenge, space, time, and appearance
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features are proposed to be the most crucial factors for
trajectory association, so a zone-gate and time-decay-based
matching mechanism is proposed to adjust the original
appearance matrix to link tracklets more precisely from
different cameras. Due to the similar appearance, the
ambiguity of the cropped image, and the numerous candidates
in the gallery, directly using appearance features for ID
clustering faces many challenges. They cluster each pair of
adjacent cameras separately and then extend the clustering
results to the entire scene chain. The zone-gate mechanism is
proposed as, From Fig 5, it can be seen that for intersection
(camera) N, there are a total of 12 driving routes for vehicles.
For all of these driving routes, if the tracklet under this camera
needs to associate with the next intersection N + 1, it must pass
through zone 3 and 4; similarly, if it needs to associate with
the previous intersection N-1, it must go through zone 7 and 8.

Fig. 5: Total of 12 driving routes for vehicles that associate
the crossroad N and its neighbors. [47]

Time-Decay Strategy is inspired by humans, as they take
into account elapsed time as an important factor when trying
to identify a target across different cameras. They also did
trajectory post-processing, they design an interpolated post-
processing module for interrupted trajectories. The proposed
method is tested on the public test set of the 2022 AI City
Challenge Track1. It achieves IDF1 of 83.71%, ranking 3rd
on the leaderboard.

5) Vehicle Counting Based on CenterTrack: This method
[48] is based on footage analysis, which is captured with traffic
cameras by counting the number of vehicles performing vari-
ous predefined motions of interest. They proposed this method
based on the CenterTrack object detection and tracking neural
network used in conjunction with a simple IoU-based tracking
algorithm. Since there are no annotations of vehicle bounding
boxes or tracks provided for this challenge, a model pre-trained
on the MS COCO dataset [18] is used. Usually, CenterTrack
is based on a single-stage key-point-based object detection
network CenterNet, which is well-suited for applications with
limited computational resources. Compared to the pure object
detection network, CenterTrack has an additional output for
each detected object which denotes the displacement of the
object from its previous position. So, with this information,
they can then track the objects across multiple frames using a
greedy algorithm based on the IoU metric.

Research in recent years has shown that a simple tracker
based on the IoU metric of object bounding boxes in con-
secutive frames can outperform more complicated trackers
when the objects are detected reliably. For example, a similar
IoU-based strategy was already employed in 2020’s AI City
Challenge. In this research, CenterTrack will first use a simple
greedy algorithm that associates objects in consecutive frames
based on distances of bounding box centers. The distance
is calculated between the center of the bounding box in the
previous frame and the center of the bounding box in the cur-
rent frame shifted by the displacement vector. This approach
adds only a very small computational overhead over the base
CenterNet architecture and is surprisingly effective. However,
it is found that this approach is not suitable especially in
very crowded scenes with vehicles of various sizes present.
To remedy this, they then use the IoU metric of the object
bounding boxes instead of the distance of the centers. Similar
to the approach based on the centers, they use the displacement
vector to shift the bounding box in the current frame. If
detection does not have IoU greater than 0.1 with bounding
boxes of any of the active tracks which have not had a new
bounding box assigned to them for that frame so far, then they
either discard it if has a confidence score lower than 0.4 or
they create a new track if this threshold is met.

The proposed method is published on Track 1 of the 2021
AI City Challenge, and in the public evaluation server, it
achieved the IDF1 score of 0.8449 and placed 8th place on
the public leaderboard.

6) ReID and Camera Link Model: This method’s [49]
focus is an MCMT framework, which mainly consists of two
innovations, i.e., traffic-aware single-camera tracking (TSCT)
and the trajectory-based camera link model (CLM).

First, TSCT is proposed to handle the long-term occlusions
created in the traffic scenarios. Usually, there will be a large
number of isolated and fragmented vehicle trajectories, created
from a single camera multi-target tracker, in the center of
the frames where vehicles do not enter or exit the camera’s
field of view (FoV). For example, when a vehicle stops in
front of a red traffic light, it can be partially or even fully
occluded in the camera’s FoV for a long time. This kind of
zone can be called a traffic-aware zone. Here, they use the
TrackletNet tracker (TNT) [50] , which is a superior SCT
method in intelligent transportation system applications, as
their single-camera tracker. According to this condition, TSCT
is proposed to find out the traffic-aware zones, where this kind
of occlusion happens, by clustering the start and end nodes
of all the resulting trajectories from the TNT. Vehicle Re-
ID in the single-camera is then implemented for these traffic-
aware zones to connect these disconnected trajectories created
in the traffic scenarios. Second, facing higher inter-class ap-
pearance similarity of distinct vehicles, trajectory-based CLM
is further proposed to impose spatial-temporal constraints and
reduce solution search space for the cross-camera ReID. For
two different vehicles with very similar appearances, it is
nearly impossible to re-identify them using a typical ReID
method. However, taking advantage of the spatial and temporal
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constraints between a pair of adjacently connected cameras,
they can easily filter out the vehicles that are not likely to
appear in a certain camera at a certain timestamp. They define
these constraints, including the vehicle entry/exit zones and the
transition times, as the CLM. Using the CLM automatically
generated from the training data, cross-camera vehicle ReID
becomes much more accurate and efficient.

Finally, a hierarchical clustering algorithm, based on the
Euclidean distance between the feature space of different
trajectories, is used to merge the trajectories among all the
cameras to obtain the final MCMT results.

The proposed method is shown to be effective and robust.
It also achieves a new state-of-the-art performance with IDF1
of 74.93% on the CityFlow dataset [19].

7) Semantic Attribute Parsing and Cross-Camera Tracklet
Matching: This proposed method [50] focuses on the city-
scale cross-camera vehicle tracking problem. As illustrated
in Fig 6, to obtain a wide range of field of view (FOV)
and reduce costs, the cameras are often placed far apart and
their FOV is always non-overlapping. The target attributes
such as appearance features and motion patterns of the same
target could be significantly different in different cameras.
Moreover, as the occurrences of each target under different

Fig. 6: The far apart placing of cameras has non-overlapping
FOV thus difficult generating a complete global trajectory for
each target.

cameras are different and unknown, it is difficult to solve
the tracklet matching problem and generate a complete global
trajectory for each target across all the cameras. To tackle
these problems, they provide an efficient two-step approach
to tracking multiple vehicles in a city-scale multi-camera
network, which first generates local tracklets for all the targets
under each camera, respectively, and then connects these local
tracklets across different cameras to generate a complete global
trajectory for each target.

More specifically, they first follow the tracking-by-detection
paradigm to generate local tracklets for all the targets under
each camera, respectively. Then they compute the affinity
of local tracklets in different cameras by semantic attribute
parsing, which produces a robust tracklet representation us-
ing a spatial-temporal attention mechanism and prunes false
matching candidates by traffic topology reasoning. Taking

the local tracklet affinity as input, the Tracklet-to-Target As-
signment (TRACTA) [50] algorithm is exploited to solve the
cross-camera tracklet matching problem, and the complete
trajectory of each target across all the cameras is obtained
by reconnecting the split local tracklets.

The proposed method is evaluated on the City-Scale Multi-
Camera Vehicle Tracking task in the 2020 AI City Challenge
and achieves the second-best result.

VI. COMPARISON

State-of-the-art tracking problems can be categorized vari-
ously. Besides, as mentioned in the above sections, there also
exist various 3D object tracking models and paradigms that
can achieve great performance in different metrics such as
precision, success, efficiency, and so on. The summary of the
aforementioned MTMC methods can be concluded in Table
IV.

Following the evaluation metrics of P2B [52] and measure
the “Success” and “Precision”. Specifically, “Success” is de-
fined as the IoU between predicted boxes and the ground truth,
and “Precision” measures the AUC (Area Under Curve) of the
distance between prediction and ground truth box centers from
0 to 2 meters. The summary of the aforementioned LiDAR-
based methods can be concluded in Table II.

Following the metrics of [53], we can show the evaluation
results of the aforementioned LiDAR and fusion-based MOT
methods tested on NuScenes test set III. For the evaluation
metric, AMOTA stands for ”Average Multi-Object Tracking
Accuracy” and AMOTP stands for ”Average Multi-Object
Tracking Precision”, both representing tracking quality. ”False
Positive” and ”False Negative” can be used to calculate Recall,
AMOTA, and AMOTP. Along with ”ID Switch”, a smaller
value of them, tends to mean better tracking results. Depending
on the specific scenario, there could also be different proper
solutions for specific tracking performance. Therefore, It’s
quite difficult to compare and evaluate different 3D object
tracking models and methods since most of them are trained
and tested on different datasets. As a result, as mentioned
in the above section, the occurrence of well-known datasets,
such as the KITTI [14] tracking dataset, Waymo Open Dataset
[15], NuScences [16], and Dair-V2X [17] dataset has provided
us an opportunity to compare different tracking models under
relatively similar conditions in terms of same metrics, so that
we can tell which one achieves better performance. However,
is there any much “stricter” comparison between different
tracking models? A very good comparison is achieved by the
“AI City Challenge”, which is a CVPR workshop competition
that we’re going to introduce later. In this section, we’re going
to discuss the similarities and differences of the methodologies
that the aforementioned papers have used. If several papers
are tested on the same dataset or simply developed in the
same track of the competition, then their performance will be
compared in terms of the same metrics.
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Name Year Car Pedestrian Van Cyclist Avarage Inference Time(ms)
P2b [52] 2020 56.2 / 72.8 28.7 / 49.6 40.8 / 48.4 32.1 / 44.7 39.5 / 53.9 23.6

PTTR [12] 2022 65.2 / 77.4 50.9 / 81.6 52.5 / 61.8 65.1 / 90.5 58.4 / 77.8 19.9
M2-Track [21] 2022 65.5 / 80.8 61.5 / 88.2 53.8 / 70.7 73.2 / 93.5 62.9 / 83.4 -

TABLE II: Summary of aforementioned LiDAR-Based SOT methods on KITTI [14] benchmark . Success / Precision are used
for evaluation.

Name Year Type AMOTA(%) AMOTP(%) FP FN IDS
CentrePoint [24] 2020 LiDAR-based 63.8 55.5 18612 22928 760
EagerMOT [28] 2020 Fusion-based 67.7 55.0 17705 24925 1156
AlphaTrack [7] 2021 Fusion-based 70.4 58.5 18247 21126 718
BEVFusion [10] 2022 Fusion-based 74.1 40.3 19997 19395 506

TABLE III: Evaluation results of LiDAR-Based and Fusion-based MOT methods on NuScenes [16] test set. AMOTA and
AMOTP follows the same definition as in comparison section. FP means ”False Positive”. FN means ”False Negative”. IDS
means ”ID Switch”

A. Comparison of LiDAR-based Methods

1) Coarse-to-fine Manner: Prediction. However, they both
follow a ”coarse-to-fine” manner, which is: firstly generating
a coarse prediction of a 3D bounding box, then performing
a certain type of prediction refinement method. Specifically,
PTTR [12] performs local pooling for both search points and
offset template points, then concatenates them to generate a
final refined prediction. M2-Track gets the coarse prediction
and performs bounding box refinement with a motion-assisted
shape completion strategy. Since both papers outperform many
previous models, especially the ones without the prediction
refinement step, we can reasonably assume that the prediction
refinement step plays a crucial role in modern LiDAR-based
methods. Methods along with a more accurate refinement step
tend to perform better in 3D SOT tasks. Interestingly, among
the aforementioned 3D MOT approaches, Yin [24] also adopts
an MLP [27] approach as PTTR [12], so we assume that MLP
could be a good try when dealing with prediction refinement
problems.

2) Fusion-based Methods Tend to Perform Better: When
comparing the results of fusion-based methods with those
of Camera-based or LiDAR-based ones, we may find out
that fusion-based methods usually have a better tracking
performance than the other two methods. The difficulty when
implementing fusion-based is that they require a more complex
structure, to fuse data from cameras and LiDARs. Why does
fusion-based achieve better performance? The reason could be:
First, cross-modality data usually contain richer information
which contributes to better 3D bounding box prediction. Sec-
ond, after the coarse prediction of the 3D bounding box, data
from different sensors can help to better refine the prediction.

B. Comparison of Camera-based methods

1) Tracking-by-Detection Paradigm: The papers of Yang
[5] , Li [42], He [47] and Ren [11] follows basically the same
overall structure. The overall structure of their models can be
summarized as follows: 1. Vehicle Detection 2. ReID Feature
Extraction 3. Single-Camera Multi-Object Tracking 4. Cross-
Camera Trajectory Association. Furthermore, they have all
applied a tracking-by-detection paradigm in the Single-Camera

Multi-Object Tracking stage. However, they are proposing
novel methods or models which often appear in the third
and fourth part of the overall structure, which leads their
models to different performances. To be more specific, in
the Single-Camera Multi-Object Tracking stage: Yang [5]
uses a DeepSORT [30] backbone with several modifications
such as offline-relink, which contributes to solving the issue
caused by frequent track ID switches. The main novelty of
his work lies in a Box-grained distance matrix construction
and optimization. Li [42] bases his tracking method on the
existing SOFT models, but he proposes an augmented tracking
prediction method by applying a feature-dropout filter and a
multi-level matching process. To tackle the probable missing
of low-confidence objects without extra data annotation, He
[47] combines state-of-the-art ByteTrack and a novel cascaded
matching strategy. Ren [11] uses DeepSORT [30], a detection-
based-tracking paradigm for the tracking stage of his paper.
As for the Cross-Camera Trajectory Association stage: Yang
[5] uses the K-Reciprocal Nearest Neighbor algorithm as
a matching strategy to find convincing pairs. Li [42] per-
forms a ’zone-based single camera tracklet merging strategy’.
To achieve precise association of trajectories from different
cameras, He [47] develops zone-based and time-delay-based
matching mechanisms, the main novelty lies in the time-
decaying idea. Ren [11] has done feature matching under
multiple cameras by proposing a low-cost MTMC strategy.

2) Use of Temporal and Spatial Information: The tradi-
tional cross-camera matching strategy which only exploits
appearance feature matching has shown low efficiency and
mismatching instance often occur. Consequently, we notice
that several papers have proposed a time and space-related
approach to improving matching precision. For example, Ren
[11] uses a spatial and temporal filter in his matching strategy.
Li [42] has adopted spatial and temporal information to
perform clustering in his tracklet merging strategy. He [47]
has also used the same information to make his association
of trajectories under different cameras more precise. Judging
from the test result, we can assume that with the introduction
of extra spatial and temporal information the model can
achieve better tracking performance.
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Name Year Sensor Method Dataset IDF1
Box-Grained Reranking [5] 2022 Camera MCMT CityFlowV2 0.8486

CenterTrack [48] 2021 Camera MCMT CityFlowV2 0.8449
Vehicle Tracking System [42] 2022 Camera MCMT CityFlowV2 0.8437
Space-Time-Appearance [47] 2022 Camera MCMT CityFlowV2 0.8371

Guided by Crossroad Zones [6] 2021 Camera MCMT CityFlowV2 0.8095
Spatial-Temporal Filtering [11] 2021 Camera MCMT CityFlowV2 0.5763

Graph Auto-Encoder [51] 2022 Camera MCMT CityFlow 0.7721
Reid camera link [49] 2020 Camera MCMT CityFlow 0.7493

SemanticAttribute Parsing [50] 2020 Camera MCMT CityFlow 0.4400

TABLE IV: Summary of Aforementioned MCMT Tracking Methods

VII. DISCUSSION

In this part, we will briefly discuss the current challenges
and future developing trends for the tracking tasks in au-
tonomous driving considering the above sections.

A. Current challenges

Accurate and consistent vulnerable road user detection
remains one of the most challenging perception tasks for
autonomous vehicles. One of the most complex outstanding
issues is partial occlusion [54], where a sensor has only a
partial view of the target object due to a foreground object
that partially obscures the target. Occlusion exists in various
forms ranging from partial occlusion to heavy occlusion. In
the automotive environment, target objects can be occluded
by static objects such as buildings and lampposts. Dynamic
objects such as moving vehicles or other road users may inter-
occlude (occlude one another) such as in crowds, and self-
occlude where parts of a pedestrian or cyclist overlap.

The frequency and variation of occlusion in the automotive
environment are vast and can also be impacted by cultural
and environmental factors [55]. To achieve the performance
required for safety in autonomous driving an algorithm or
set of algorithms, must consistently generalize to reach the
state of the art performance in all benchmarks, cultures, and
environmental conditions.

Additionally, and perhaps most challenginglly, any success-
ful approach must also have the computational efficiency to
robustly identify objects in real time. The process of accurately
assessing algorithm performance for the detection of partially
occluded objects is a difficult one. There are a wide variety of
test datasets available for object detection based on the desired
target, environmental conditions, and sensing methods. Incon-
sistency between each dataset’s definition and annotation level
of occluded targets and the metrics used, present difficulties
when attempting to accurately quantify performance.

B. Future trends

1) Cooperative Perception: Optical sensors and learning
algorithms for autonomous vehicles have dramatically
advanced in the past few years. Nonetheless, the reliability
of today’s autonomous vehicles is hindered by the limited
line-of-sight sensing capability and the brittleness of data-
driven methods in handling extreme situations. With recent
developments in telecommunication technologies, cooperative
perception with vehicle-to-vehicle communications has

become a promising paradigm to enhance autonomous
driving in dangerous or emergencies.

2) Sensor fusion: A multi-sensor-based perception system
[56] has the potential to improve the perceiving performance
by taking advantage of complementary sensor data with appro-
priate fusion techniques. An infrastructure-based perception
system has more flexible conditions for multi-sensor equip-
ment and is capable of empowering high-computational edge
servers. Therefore, with the increasing application of deep
learning, the relevant multi-sensor fusion strategy needs to be
further improved, especially the serial network structure needs
to be adjusted to adapt to the fusion of various sensor data.
The purpose of multi-target tracking is to obtain the motion
intention of the target and the environment reconstruction is
to generate a safe driving area. However, it is difficult to
do these tasks well with sensors alone, which need to be
combined with location sensors, maps, and V2X. Besides, to
form the perception ability to look around, AD vehicles need
the cooperation of a variety of similar sensors, which need
to cooperate closely with the whole system, and future work
should explain further.

VIII. CONCLUSION

In this paper, We first introduced the current status of
autonomous driving technology based on infrastructure sen-
sors and expounded on its technological development and
application scenarios. Then, we present the top-ranked studies
in the 2021 and 2022 AI city challenges and introduce the
novelties in these studies. Next, we compared the above-
mentioned innovative methods with the databases used in
those researches. At last, we analyze the challenges and
future development trends of the current roadside sensor-based
autonomous driving technology.
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