
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Self-Supervised Feature Learning for 3D
LiDAR Semantic Segmentation with

Neural Radiance Fields

Cavit Çakır

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Self-Supervised Feature Learning for 3D LiDAR Semantic
Segmentation with Neural Radiance Fields

Selbstüberwachtes Lernen von Merkmalen für Semantische
Segmentierung von 3D Lidar-Daten mit Neural Radiance Fields

Author: Cavit Çakır
Supervisors: Markus Herb, MSc.

Xavier Timoneda Comas, MSc.
Advisor: PD Dr. Federico Tombari
Submission Date: 15 December 2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15 December 2023 Cavit Çakır

Acknowledgments

In the completion of this thesis, I am deeply grateful for the support and opportu-
nities provided by several key institutions. My sincere appreciation goes to the Chair
for Computer Aided Medical Procedures & Augmented Reality (CAMP) at Technical
University of Munich (TUM), under whose prestigious and innovative banner I had the
privilege to conduct my research. Further, I extend my sincere thanks to the Perception
& Fusion department at CARIAD. The environment, resources, and expertise offered by
both these institutions have been instrumental in the successful completion of my thesis,
enriching my research experience. Additionally, I must express my deep appreciation to
my supervisors, whose guidance and insights have been pivotal at every stage of this
project. Their support and constructive feedback have not only shaped this thesis but
also my growth as a researcher and professional.

Lastly, I must express my profound gratitude to my family and friends. Their
continuous support, understanding, and belief in my potential have been a fundamental
source of motivation and strength. This thesis is not only a product of my work, but
also a reflection of the persistent love and support they have so generously given.

Abstract

The digital age has led to the collection and easy accessibility of vast amounts of unla-
beled data, creating a demand for scalable machine-learning models. Self-supervised
feature learning methods provide an effective approach to unlock the potential of unla-
beled digital resources. In 3D perception tasks, extracting meaningful information from
scenes is crucial for the autonomous driving domain but often requires the availability
of labeled real-world datasets, which are available in minimal quantities. What if a
method could directly learn features for each point in the 3D scene from a collection of
images and utilize these features for 3D perception tasks?

In this thesis, we propose a novel approach utilizing Neural Radiance Fields (NeRFs)
to achieve self-supervised feature learning for the 3D Light Detection and Ranging
(LiDAR) semantic segmentation task. Our method uses images and foundation models
to learn volumetric feature maps for various scenes. These maps are then used as
supervision for the semantic segmentation model. The approach consists of two main
stages. In the first stage, we train a NeRF model for each scene using images and their
feature maps which are extracted through self-supervised 2D image feature extractors.
This process involves simultaneously learning a continuous volumetric feature map and
reconstructing the 3D environment. In the second stage, we train a general LiDAR se-
mantic segmentation model in a self-supervised fashion. We achieve this by supervising
the semantic segmentation model with per-point features from the NeRF model for
each LiDAR scan. This enables our 3D LiDAR semantic segmentation model to gain
geometrically aware features for 3D LiDAR points. Unlike the first stage, the model’s
domain is no longer a single scene but rather an entire dataset.

We conducted experiments on autonomous driving scenes from the nuScenes dataset,
using image and LiDAR data, to evaluate our method, identify its limitations, and
benchmark it against baseline and 2D camera projection models. These experiments
demonstrate the effectiveness of our approach and provide insights into its performance
in real-world scenarios. Our proposed method illustrates the potential of distilling
image features into a 3D domain and utilizing these features to train a self-supervised
3D LiDAR semantic segmentation model. While our model surpassed the performance
of the baseline model, it was outperformed by the 2D camera projection model. This
approach not only showcases the promising capabilities of leveraging image features but
also highlights their significance as a pathway for further research and advancements.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1

2 Related Work 5
2.1 Semantic Segmentation . 5
2.2 Neural Radiance Fields (NeRFs) . 7
2.3 Knowledge Distillation from Large Datasets and Models 8

3 Fundamentals 13
3.1 Foundation Models . 13

3.1.1 Vision Transformer (ViT) . 13
3.1.2 DIstillation with NO labels (DINO) 14
3.1.3 Contrastive Language-Image Pretraining (CLIP) 15

3.2 Neural Radiance Field (NeRF) Models . 16
3.2.1 The Neural Radience Fields (NeRFs) 16
3.2.2 Language Embedded Radiance Field (LERF) Model 19

3.3 Cylinder3D Model . 22
3.4 Camera Geometry and Projections . 25
3.5 COLMAP . 25

4 Approach 27
4.1 Overview . 27
4.2 Scene-wise NeRFs . 28

4.2.1 The NeRF model . 29
4.2.2 The Feature Extraction Method . 31

4.3 3D Semantic Segmentation Model . 36
4.3.1 The Backbone . 36
4.3.2 The Feature Head . 37

5 Evaluation 41
5.1 Experiment Settings . 41

5.1.1 Dataset . 41
5.1.2 Baseline Settings . 44
5.1.3 NeRF Settings . 45

vii

Contents

5.1.4 3D LiDAR Semantic Segmentation Model Settings 46
5.1.5 The Camera Projection Model . 47
5.1.6 Semi-Supervised Setup . 48

5.2 Ablation study . 49
5.3 Final model . 51

5.3.1 Interpreting Results . 51
5.3.2 Potential Reasons for Results . 53

6 Conclusion and Future Work 61
6.1 Conclusion . 61
6.2 Future Work . 62

6.2.1 Incorporating Dynamic Scenes . 62
6.2.2 Different Self-Supervised Feature Extractors 63
6.2.3 Different Architecture for Volumetric Space 63
6.2.4 Using Per-Cylindrical Voxel Features 63

Abbreviations 65

List of Figures 67

List of Tables 69

Bibliography 71

viii

1 Introduction

Autonomous driving aims to revolutionize how we commute by offering enhanced safety,
efficiency, and convenience. A critical component of this technology is the vehicle’s
ability to perceive and interpret its environment accurately [1], [2]. This capability
depends on advanced technologies like Light Detection and Ranging (LiDAR) and
semantic segmentation. LiDAR, using pulsed laser light, measures distances to create
high-resolution three-dimensional environmental maps. In autonomous driving, these
maps are vital for safe navigation. Semantic segmentation in the context of LiDAR data,
referred to as 3D LiDAR semantic segmentation, involves classifying each point in a
LiDAR point cloud into different categories, such as vehicles, pedestrians, and roadways.
This classification is essential for autonomous vehicles to understand and interact with
their surroundings effectively. However, interpreting LiDAR data poses challenges due
to the sparsity of point clouds, similarities in shapes between different classes, and
varying data densities and intensities.

With technological advancements, collecting data for autonomous driving has become
easier. However, despite the abundance of unlabeled data, a significant challenge
remains in the labor-intensive process of labeling 3D point cloud data which are acquired
from LiDAR sensors [3]. A significant amount of labeled data is essential for various
perception tasks such as semantic segmentation, object detection, and motion prediction,
where achieving high performance is crucial [4], [5]. In popular datasets, LiDAR
data is often coexisting with other sensor inputs, such as cameras, providing a more
comprehensive view [6]–[9]. Currently, researchers are exploring the use of these sensors
to either improve model performance or reduce the dependence on large volumes of
labeled data [10]–[12]. However, most 3D LiDAR semantic segmentation models are
dependent on labeled datasets, requiring a significant amount of this data for effective
performance. There are models that have attempted to address these challenges by
supervising the 3D semantic segmentation models with only images from cameras [12].
Similarly, some models project LiDAR data onto images, using the features of these
images to supervise the 3D model [11]. Yet, this approach also leads to the disregard of
3D information. Additionally, not all LiDAR points are captured in the camera’s field of
view, resulting in further information loss. These challenges highlight the complexity
and ongoing efforts in autonomous driving, particularly in the accurate and efficient
processing of 3D LiDAR data.

After discussing the challenges and the current state of technology in 3D LiDAR
semantic segmentation for autonomous driving, this thesis seeks to answer the following
question: ’How can we effectively reduce the reliance on extensively labeled datasets
in training 3D LiDAR semantic segmentation models, by integrating novel approaches

1

1 Introduction

such as Neural Radiance Fields (NeRF) [13] with foundation models?’
This research question is particularly significant given the crucial role of LiDAR

technology in generating high-resolution 3D environments, a key factor in enhancing
perception models for autonomous driving. Additionally, it addresses the challenge of
accessing large volumes of labeled data, which is a common limitation in this domain.
To answer it, we introduce a novel approach that integrates NeRF with foundation
models to supervise a 3D LiDAR semantic segmentation model. NeRF is a cutting-edge
method for creating detailed 3D models from 2D images. It works by synthesizing new
views of a scene through a continuous volumetric scene representation, learned from the
data. This approach is particularly beneficial in autonomous driving scenarios, where it
can effectively represent complex spatial relationships.

Figure 1.1: Example visualization of images and their DINO features. Principal Component
Analysis (PCA) applied for feature visualizations.

To extract semantic information from camera data, we employed DIstillation with
NO labels (DINO) [14], a self-supervised 2D feature extractor, as part of the process for
learning a continuous volumetric feature space. DINO’s authors claim extracted features
include hints for semantic segmentation. Therefore, it is a suitable model for learning
features from camera data to supervise a 3D LiDAR semantic segmentation model.
Example visualization for extracted DINO features is shown in Figure 1.1. Further, we
used a NeRF model that incorporates the DINO model, specifically Language Embedded
Radiance Fields (LERF) [15]. We constructed 3D volumetric scenes by incorporating
both images and their features. This method contrasts with traditional approaches
that directly project 2D features extracted from images onto point clouds. Learning a
volumetric feature map in 3D space offers advantages over directly projecting 2D features
extracted from images onto a point cloud. The volumetric approach allows for a more
comprehensive representation of the scene’s spatial characteristics, capturing information
lost in the projection process. By learning features in 3D space, the supervised model
gains an understanding of the scene’s depth and volumetric relationships. In contrast,
direct 2D-to-3D projection lacks the depth cues essential for accurate spatial reasoning.

2

Therefore, adopting a volumetric feature map approach enables more comprehensive
feature learning. An example of extracted DINO features from our NeRF models is
visualized in Figure 1.2.

Figure 1.2: 3D Visualization of Extracted DINO Features from Our NeRF Models. PCA applied
for feature visualizations.

In our 3D LiDAR semantic segmentation task, we have adapted the Cylinder3D [16]
model to better suit our needs. Cylinder3D is a state-of-the-art model known for its
efficiency and accuracy in processing point cloud data. It uses a cylindrical partitioning
approach to better capture the spatial layout of the data, which is particularly effective for
the diverse and complex structures encountered in autonomous driving environments.
Our modification includes integrating a feature head with a shared backbone for both
semantic analysis and feature extraction. This integration allows the model to use the
learned DINO features from each point in LiDAR scans, derived from the NeRF model.
Such an approach enhances the model’s ability to interpret LiDAR data while reducing
its dependence on extensively labeled datasets. One of the critical advantages of our
approach is that, during inference, there is no need to train or query a NeRF. This is
because we perform offline sensor fusion by training our semantic segmentation model
with scene-specific NeRFs. As a result, the inference step becomes very fast, potentially
enabling real-time inference performance. The details of the implementation, along with
the reasons and advantages of our approach, are explained in the Approach Section.

We evaluated our model using the validation subset of the nuScenes dataset [6]. To
comprehensively compare our model, we also trained a camera projection model, which
has the same architecture as our approach, with the only difference being in feature
supervision. Additionally, we trained a baseline model using only a labeled dataset.

3

1 Introduction

Our tests showed that both our proposed model and the camera projection model
performed better than the baseline model, which supports our claims. However, the
camera projection model performed slightly better than our proposed model. We have
detailed the evaluation setup and discussed possible reasons for these results in the
Evaluation Section. Furthermore, we have outlined some potential improvements in the
Conclusion and Future Work Section.

4

2 Related Work

This chapter will provide a literature review and recent techniques in the following
broadly divided three categories: (1) Semantic Segmentation, (2) Neural Fields (3)
Knowledge Distillation from Large Datasets and Models.

2.1 Semantic Segmentation

Semantic segmentation is an essential and challenging task in machine learning and
computer vision. This technique involves assigning semantic labels to each pixel in an
image, resulting in an understanding of the scene at the pixel level. The importance
of this task is emphasized by its various applications, such as autonomous driving
[17]–[19], robotics [20], [21], and medical imaging [22], [23].

Several different approaches exist to approach the semantic segmentation task. One
of the first approaches is, Convolutional Neural Network (CNN) [24], which extracts
hierarchical features from the image data. Specifically, deep learning-based segmen-
tation methods like U-Net [22] have become standard architectures due to their high
performance and ability to handle variable input sizes.

Recently, Vision Transformer (ViT) techniques have started to dominate the field of
semantic segmentation [25]. ViT-based semantic segmentation models process the input
image as a sequence of pixel patches and use self-attention mechanisms to catch global
relations between patches. However, the challenge with ViT for semantic segmentation
is the downsampled resolution in the final output due to the patch-based input. The
ViT models are explained in detail in the Fundamentals Section.

In the following two paragraphs, two ViT-based semantic segmentation models will
be introduced;

In the paper "Emerging Properties in Self-Supervised Vision Transformers" [14],
the authors investigate the potential advantages of self-supervised learning for ViT
compared to CNN. The authors of the paper observe that self-supervised ViT features
explicitly contain information about the semantic segmentation of an image, which
is not as evident in supervised ViTs or CNNs. They introduced a self-supervised
method called DINO, which they use as a method of self-distillation without relying
on labeled data. By combining DINO with ViTs, they achieve a top-1 accuracy of 80.1%
on ImageNet [26] in linear evaluation with ViT-Base. The DINO model is explained in
detail in the Fundamentals Section.

"Segment Anything Model (SAM)" is another method that is built on ViT. It is a
powerful self-supervised model for image segmentation, capable of generating masks

5

2 Related Work

for any object in images or videos. Trained on a diverse dataset of over 1 billion masks.
Built on a lightweight architecture which makes SAM able to run on web browsers. It
has a strong ability to extract features, accurately segment objects, and handle various
scenarios [27].

3D LiDAR semantic segmentation, which involves classifying each point in a LiDAR
point cloud into different categories, is also a critical and challenging task due to its
wide-ranging applications and its 3D nature. LiDAR data, being 3D, adds an additional
level of complexity compared to 2D image data. Moreover, LiDAR data is commonly
sparse [28], especially compared to 2D images, which adds to the challenge. 3D LiDAR
semantic segmentation helps in categorizing the objects detected by the LiDAR into
classes. Perhaps the most significant application of 3D LiDAR semantic segmentation is
in the development of self-driving vehicles [29]–[31].

Previous 3D LiDAR semantic segmentation approaches can be roughly grouped into
three categories: point-based [30], range-based [32], and voxel-based methods [16]. Point-
based techniques use points directly utilize point clouds to categorize every single point
according to its semantic label. These methods usually extract significant characteristics
from the initial point cloud data. Furthermore, the large volume of points in the cloud
introduces computational difficulties.

Range-based techniques involve transforming LiDAR point clouds into a 2D space to
generate a range view, enabling the utilization of 2D convolutions for further processing.
Nonetheless, these methods face limitations in fully capturing the geometric information
due to the 3D-to-2D projection process.

Voxel-based techniques include the transformation of LiDAR point clouds into voxel
forms. These forms are then fed to 3D convolutions for the extraction of features.
However, these techniques need huge memory capacity. Sparse convolutions address
these challenges by significantly quickening the 3D convolution procedure and delivering
good segmentation performance.

Another novel voxel-based approach to LiDAR semantic segmentation is Cylinder3D
[16]. The method uses a 3D cylinder partition to encode the point clouds in a cylindrical
coordinate system, which preserves the 3D topology and balances the point distribution.
It also uses a 3D convolution network, which employs residual blocks and context
modeling modules based on dimension decomposition. This is used to exploit the
high-rank context information present in the point clouds. The Cylinder3D model is
explained in detail in the Fundamentals Section.

Besides regular approaches, there are also methods that use image & laser fusion and
supervision on the 3D LiDAR semantic segmentation task. With the help of extra 2D
image features and laser scans, researchers improved their methods. 2DPASS [11] is a
method that uses 2D priors from camera images to improve the semantic segmentation
of LiDAR point clouds. In contrast to fusion-based methods that require point-to-pixel
correspondences between LiDAR point clouds and camera images, 2DPASS operates
on 2D images without paired data constraints. This enables it to perform semantic
segmentation without the restrictions of paired data. The purpose of using RGB images

6

2.2 Neural Radiance Fields (NeRFs)

is to provide strong regularization and priors for the sparse LiDAR point clouds, which
can enhance the representation learning and segmentation performance.

Lastly, when we analyze the leading 3D LiDAR semantic segmentation benchmarks,
such as NuScenes [6] and SemanticKITTI [8], [9], they reveal a clear trend: voxel-based
approaches [11], [29], [33] are mostly the top performers. This is also evident in models
using Cylinder3D as their backbone [10], [34]. The dominance of voxel-based methods
over point and range-based approaches is not only evident in pure segmentation tasks
but also in sensor fusion models [10]. This outperformance has motivated us to adopt
voxel-based approaches in LiDAR semantic segmentation for the research conducted in
this thesis, especially the Cylinder3D model.

2.2 Neural Radiance Fields (NeRFs)

NeRF stands for Neural Radiance Fields. It is a fully connected neural network that can
learn 3D scenes and generate novel views based on 2D images. The method includes
inputting the complete scene into Multilayer Perceptrons (MLPs). This network uses
the information to predict the RGB colors and brightness levels at various locations
within the 2D image, resulting in the creation of 3D representations of the object or scene
based on the 2D images [13]. NeRFs has multiple practical applications, such as scene
and object segmentation, labeling, understanding, as well as editing [35] [36] [37] [38]
[39]. NeRF models have several advantages over traditional 3D techniques. They can
grasp complex lighting effects and surface details that are challenging to represent using
standard methods. Moreover, they can render scenes with high geometric complexity
and detail. However, training a NeRF model is computationally intensive, often requiring
several hours or even days to process complex scenes. The NeRF model is explained in
detail in the Fundamentals Section.

Nowadays, there are several methods that try to make training of NeRF fast but
Instant NGP (Neural Graphics Primitives) [40] is the milestone for fastening training
NeRF models. An effective multi-resolution hash encoding is the main contribution of
this paper. The authors find they can increase sampling speed by 10-100x compared to
naive approaches.

NeRF have proven to be effective in various areas, including semantic segmentation.
One noteworthy advancement in NeRF’s use cases is Semantic-NeRF. Their work has
demonstrated that adding a semantic head into a scene-specific NeRF model that en-
compasses geometry and appearance enables the generation of high-resolution semantic
labels for a scene. Their approach can be utilized for interactive labeling in scenes
where labeling is limited. However, this technique is not object-aware and cannot handle
dynamic scenes [38].

Also, another use case of NeRF is in the domain of panoptic segmentation in dynamic
scenes. The approach is called Panoptic Neural Fields (PNF). The main aim of PNF
is to break down a scene into objects and backgrounds. To achieve efficiency, they
use instance-specific Multilayer Perceptron (MLP) for objects. Additionally, the model

7

2 Related Work

incorporates prior knowledge specific to objects through learned initialization. The
background is also represented using a similar MLP, which provides semantic labels.
The model takes advantage of existing algorithms for predicting camera poses, object
tracks, and 2D image semantic segmentation [41].

2.3 Knowledge Distillation from Large Datasets and Models

Knowledge distillation within the domain of machine learning denotes the process of
compressing the knowledge present in large, complex models into smaller models while
maintaining their performance. The principle of distillation, as suggested in the paper
"Distilling the Knowledge in a Neural Network", contains training a ’student’ model
to imitate the original or ’teacher’ model. The performance of the student model can
exceed that of the teacher model. Various methods have been developed to apply this
teacher-student paradigm to distill features in computer vision tasks. Several approaches
distill the output of a 2D teacher network into a student network that operates in a 3D
space [42].

In the domain of 3D semantic segmentation, several works use the supervision of
2D images on the 3D LiDAR semantic segmentation task. With the help of 2D image
feature extractors, 3D models became capable of learning extra information. Some of the
following works also didn’t even use 3D labeled data which leads to reducing the need
for labeled 3D data. In the following paragraphs, we will introduce several key models
and explore their differences and similarities in relation to our work. This comparison
will provide a deeper understanding of how our approach aligns with or diverges from
ideas in the field.

The paper "Learning 3D Semantic Segmentation with only 2D Image Supervision"
[12] presents a method for learning 3D semantic segmentation without any 3D labeled
data. Due to limited and costly ground-truth 3D semantic annotations, the authors
propose a method that leverages pseudo-labels derived from 2D image segmentations.
Together with image features, they also use RGB images as input features to the 3D
network, since they provide useful information for discriminating object classes based on
their appearance. There are notable differences between our approach and [12]. While
they limit their supervision to regions within the camera’s field of view, our method
extends supervision to encompass all points captured in a LiDAR scan. Furthermore, we
incorporate a specific amount of labeled 3D data into our model, enhancing its accuracy
and robustness. In contrast, they do not use labeled 3D data in their framework.

Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data (SLidR)
[43] is a self-supervised method for segmenting and detecting LiDAR point clouds of
an autonomous driving environment. Their approach utilizes synchronized images
and LiDAR sensors to distill self-supervised pre-trained image features into 3D models,
eliminating the need for annotations. By grouping visually similar regions using
superpixels, they train a 3D network to match point and pixel features. Experiments
on autonomous driving datasets demonstrate the effectiveness of their image-to-LiDAR

8

2.3 Knowledge Distillation from Large Datasets and Models

distillation strategy. Similar to the approach in [12], their supervision is limited to
regions within the camera’s field of view. In contrast, our method extends supervision
to include all points captured in a LiDAR scan.

Point-to-Voxel Knowledge Distillation (PVKD) [34] introduces a method for distilling
knowledge from a large teacher model to a compact student network for LiDAR semantic
segmentation therefore it compresses LiDAR semantic segmentation models. PVKD
addresses the challenges posed by point cloud data, such as sparsity and randomness,
by transferring hidden knowledge from both the point and voxel levels. It incorporates
output distillation and intermediate distillation to improve performance. Additionally,
the point cloud is divided into supervoxels, and a difficulty-aware sampling strategy
is used to prioritize supervoxels containing less frequent classes and faraway objects.
Unlike the approaches mentioned earlier, their work only utilizes data that does not
originate from cameras. A significant aspect of their research that aligns with our
approach is the demonstration of feature learning using the Cylinder3D model.

Furthermore, there are recent works that successfully distilled self-supervised 2D
image features to NeRF models. These works proved that NeRF is capable of recon-
structing image features as well as the scene. This property of NeRFs motivated us to
apply the methodology that the following papers have used, specifically the approach
of the LERF [15] model.

In Decomposing NeRF for Editing via Feature Field Distillation (DFF) [44], they
proposed a method for editing 3D scenes represented by NeRF using query-based
semantic decomposition. The method involves using a teacher-student framework,
where the teacher network is a pre-trained 2D image encoder and the student network
is a 3D feature field. The method distills the knowledge of pre-trained 2D image feature
extractors into a 3D feature field that is optimized in parallel to the radiance field. The
feature field can segment and select regions in the 3D space based on user queries of
text or image patches, and enable various appearance and geometry edits.

In Neural Feature Fusion Fields (N3F) [45], like [44], they distill 2D image features into
a 3D representation via neural rendering. Their purpose for the distillation is to enhance
the consistency, viewpoint independence, and occlusion awareness of the features, as
well as to incorporate open-world knowledge from pre-trained feature extractors. The
paper demonstrates the benefits of N3F for various tasks, such as 2D and 3D object
retrieval, segmentation, and editing, on static and dynamic scenes.

In "Baking in the Feature" [46], they propose a method for volumetric segmentation
of 3D scenes using NeRF and image features extracted from pre-trained models. They
also distill 2D image features to the model by adding a feature head to the NeRF model.
The purpose of the distillation is similar to [45] and [44], that is to leverage the semantic
and spatial information encoded in the image features to improve the segmentation
performance and reduce the amount of supervision required. Different from previous
methods, Baking in the Feature has a segmentation head to infer semantic labels from
sparse pixel annotations.

9

2 Related Work

Also in FeatureNeRF [47], they introduce a method that uses pre-trained 2D vision
models to learn 3D semantic features via NeRF. Similar to [45] and [44], the aim of this
distillation is to use neural rendering to transfer knowledge from the 2D models to the
encoder, enabling FeatureNeRF to map 2D images into continuous 3D semantic feature
volumes. Unlike the previously mentioned papers, this model also extracts deep 3D
features from NeRF MLPs. The paper validates the effectiveness of FeatureNeRF as a
universal 3D feature extractor through evaluations on 2D/3D semantic keypoint transfer
and object part segmentation tasks.

NeRF-SOS [48] is a self-supervised framework for object segmentation using neural
radiance fields. The approach uses a contrastive loss that encourages the segmentation
features to be consistent with both the appearance and the geometry of the scene. The
appearance contrastive loss uses features from a pre-trained 2D image feature extractor
to create clusters of visually similar objects. The goal of distillation is to generate object
masks from any perspective, using the learned segmentation field. The paper shows
that NeRF-SOS outperforms image-based co-segmentation techniques and results in
more detailed segmentation outcomes.

The paper LERF [15] is a method for grounding language embeddings from a pre-
trained model like Contrastive Language-Image Pretraining (CLIP) [49], as well as visual
features from a model like DINO, into NeRF, which enables open-ended language
queries in 3D. LERF learns a language field inside NeRF by volume-rendering CLIP
embeddings along training rays simultaneously distilling features from a pretrained 2D
image feature extractor. The LERF model is explained in detail in the Fundamentals
Section.

In the previous paragraphs, we introduced approaches for 3D semantic segmentation
and NeRF. Subsequently, we dived into knowledge distillation methods applicable to
both 3D semantic segmentation and NeRF. These topics were presented to offer an
overview of the current literature and to clarify the rationale behind our model selection.
In the following paragraphs, we will explore some works that have approaches similar
to ours, discussing their methodologies and comparison with our approach.

In recent studies [50]–[54], NeRF have been integrated into various architectures to
develop compact and general models for a range of perception tasks. These approaches
involve training a general 2D image feature extractor network, which learns features for
any point in the scene by projecting that 3D point onto the image. Subsequently, these
features are fed into neural fields consisting of several MLP layers. This methodology
enables the models to query a point in their generalized feature extractor, obtaining
relevant features for densities and other necessary aspects of the point, assisted by
neural fields. Utilizing this approach, tasks such as semantic scene sompletion (SSC),
Monocular SSC, and generating novel views from a single image have been successfully
achieved.

The primary distinction between our research and the works conducted by [50]–[54]
lies in the nature of the specific tasks each project addresses. Our focus is on 3D LiDAR

10

2.3 Knowledge Distillation from Large Datasets and Models

semantic segmentation, which differs from the tasks they pursue. Another key difference
is in our methodology. We approach the problem by first constructing the entire scene,
and then sampling features for each LiDAR point from our NeRF model. These sampled
features are subsequently used as supervision for our general 3D semantic segmentation
model. In contrast, the approaches in those works involve learning a general 2D feature
extractor architecture, which is primarily used to learn densities and other required
features.

Also, in the paper [55], the authors introduce Neural Semantic Fields (NeSF), a novel
approach for generalizable semantic segmentation in 3D scenes using NeRF. They
train a NeRF model for each scene and then sample a density grid to obtain the 3D
scene representation. Subsequently, they train a shared 3D U-Net [22] architecture for
geometric reasoning. The output of this network, which they refer to as the ’feature
grid’, is then transformed into semantic probability distributions through volumetric
rendering.

The differences between our work and [55] begin with the type of data used; we utilize
LiDAR data, whereas they rely solely on 2D images. In our approach, we sample features
for each LiDAR point from our NeRF models and then use these features to supervise
a general 3D semantic segmentation model. In contrast, [55] constructs a density grid
in their NeRF world and attempts to align these with semantic labels using volumetric
rendering. Additionally, our work is focused on the domain of self-supervised training,
while their approach uses only labeled data.

Therefore, based on these works, it is evident that there are currently no other studies
in the domain of self-supervised 3D LiDAR semantic segmentation that integrate NeRF
and foundation models. This integration is novel in its approach to reducing the reliance
on labeled LiDAR data. This gap in existing research highlights the potential impact of
our study in advancing the field.

11

3 Fundamentals

In this section, we will introduce and describe the various technologies used in our
study. Our focus will be on explaining what these technologies are and how they
function individually. This overview aims to distinguish these technologies from our
approach, enabling a better understanding of our contributions in contrast to the existing
technologies.

3.1 Foundation Models

3.1.1 Vision Transformer (ViT)

Transformer models, as introduced in [56], represent a revolutionary artificial intelligence
architecture in the domain of Natural Language Processing (NLP), significantly changing
how machine learning models learn from data. Unlike traditional models that process
data sequentially, transformers handle information in parallel, significantly improving
efficiency and speed. A key component of transformers is the "attention mechanism",
which allows the model to focus on different parts of the input data, determining how
much attention to give to each different part. This attention mechanism enables the
model to capture complex relationships in the data. By weighing the importance of
various elements in the input, transformers can generate more accurate and contextually
relevant outputs.

Figure 3.1: An overview of the ViT model. This figure is directly sourced from [25].

13

3 Fundamentals

The Vision Transformer (ViT) [25] is a novel approach in the field of computer vision,
diverging from the dominance of Convolutional Neural Networks (CNNs) [57]. CNN is
a type of deep learning algorithm primarily used in image recognition and processing
that is efficient and effective at handling spatial data. It detects and learns hierarchical
patterns in data, such as edges and textures in images, through layers of convolutions
and pooling operations. ViT’s origin lies in the application of transformer models to
the domain of image processing. The unique aspect of ViT is its treatment of images as
sequences, much like how text is treated in NLP. This approach involves dividing an
image into a series of fixed-size patches and processing these patches as if they were
elements in a sequence. This method enables the model to capture global contextual
information from the entire image, in contrast to CNNs which focuses on extracting
local features.

The architecture of the ViT, as shown in Figure 3.1, begins by partitioning an image
into patches and linearly embedding these patches. To these embeddings, positional
information is added to maintain the spatial context of each patch. The important aspect
of ViT is its stack of transformer layers, each consisting of an attention mechanism
and a feed-forward neural network. This design allows the model to process different
parts of the image simultaneously and understand the image globally. Including Layer
Normalization and Residual Connections in each transformer layer is essential, as they
contribute significantly to the robustness and efficiency of the model’s training process.
The output from the transformer layers is then utilized for tasks like image classification.
Typically, this involves passing the output through a classification head, often including
a linear layer. However, this head can be adapted based on specific requirements.
What sets ViT apart is its ability to use the global context of images, allowing it to
identify patterns and relationships that can be ignored by models that focus only on
local features.

3.1.2 DIstillation with NO labels (DINO)

The DIstillation with NO labels (DINO) [14] model depicts a significant advancement
in self-supervised learning, especially in the domain of visual representation learning.
Self-supervised learning is very advantageous due to its ability to use unlabelled data,
avoiding the costs and effort for the data annotation. This makes DINO not only
innovative but also practical for real-world applications where labeled data is limited.
DINO diverges from traditional supervised learning methods by focusing on knowledge
distillation in a self-supervised context. Knowledge distillation, typically used to transfer
knowledge from a larger, more complex model to a smaller one is adapted here to enable
learning between two models without direct supervision.

The architecture of DINO contains two key components: a student network and a
teacher network. These networks share the same architecture, usually a standard ViT
[25] model, but their parameters differ. As explained in previous paragraphs, the ViT
is a deep learning model that applies the transformer architecture, which is known
for its success in NLP, to image recognition. It processes images by dividing them

14

3.1 Foundation Models

into fixed-size patches, embedding them linearly, and then feeding the sequence of
embeddings into a transformer block, finally to task specific head. During training, the
student network aims to mimic the teacher network’s output. The student network’s
parameters are updated with gradient descent, while the teacher’s parameters are
updated as an exponential moving average of the student’s parameters. This strategy
ensures the teacher provides stable targets for the student network to learn. A crucial
detail of DINO’s training pipeline is its reliance on input data augmentations. Both the
student and teacher networks are fed augmented versions of the same image, including
modifications in color, cropping, and other image transformations. These augmentations
ensure the student model learns invariant and robust features, enhancing its ability to
generalize from the training data.

In summary, compared to traditional supervised learning models, DINO presents
crucial advantages. It eliminates the need for labeled datasets, reduces the risk of
memorization for specific datasets, and encourages the model to learn more generalizable
features.

3.1.3 Contrastive Language-Image Pretraining (CLIP)

The Contrastive Language-Image Pretraining (CLIP) [49] model presents a novel ap-
proach to computer vision, specifically in the field of multimodal learning where both
visual and textual data are processed. The idea of CLIP is to connect the content of im-
ages and texts in a way that enables the model to perform a wide variety of vision tasks
with minimal task-specific training. It is designed to learn visual concepts from natural
language supervision, bridging the gap between vision and language understanding.

CLIP’s architecture comprises two components: a vision encoder and a text encoder.
The vision encoder can be a CNN or a ViT, designed to process images, while the text
encoder is a transformer-based design, that reflects the progress made in the field of NLP.
These encoders convert raw inputs into embeddings within a shared multi-modal space,
bringing the representations of corresponding image and text pairs closer together. This
process requires a comprehensive understanding of both visual features and textual
semantics, enabling CLIP to effectively interpret both types of data.

The training of CLIP operates in the concept of contrastive learning as shown in
Figure 3.2. During training, it is fed with a batch of images and a corresponding set
of texts. The model learns by maximizing the similarity between the correct pairs of
image and text embeddings, while simultaneously minimizing the similarity between
mismatched pairs. This process is achieved through a contrastive loss. By training
on a large dataset of images and their corresponding text descriptions, CLIP learns
to understand and relate the content of images and texts in a manner that is broadly
applicable across various vision tasks. This ability allows CLIP to be used for tasks like
zero-shot classification, where it can accurately classify images into categories it has
never seen during training.

15

3 Fundamentals

Figure 3.2: An overview of contrastive training of CLIP model, as depicted in this figure directly
sourced from [49].

3.2 Neural Radiance Field (NeRF) Models

3.2.1 The Neural Radience Fields (NeRFs)

Figure 3.3: An overview of the NeRF scene representation and its differentiable rendering
process, as depicted in this figure directly sourced from [13].

Neural Radiance Fields (NeRFs) [13] represent an innovative approach in the field
of computer vision and 3D reconstruction. At its core, NeRF is a deep learning model
that synthesizes highly realistic 3D scenes from a set of 2D images. The architecture of
NeRF consists of a fully connected deep neural network, with MLPs as its fundamental
component. These MLPs are tasked with the complex function of learning a continuous
volumetric scene representation. What distinguishes NeRF’s architecture is its unique
handling of inputs and outputs. The MLP network that is shown in Figure 3.3 takes
in both 3D coordinates (x, y, z) and 2D viewing angles (θ, ϕ) as input. With the help
of the positional encoding layer, the input data is preprocessed for the MLPs. The

16

3.2 Neural Radiance Field (NeRF) Models

positional encoding layer is a key component of NeRF’s architecture. This layer is crucial
to enable the network to capture high-frequency details in the scene. In traditional
networks, directly feeding in coordinates (x, y, z) and viewing angles (θ, ϕ) often
leads to a loss of detail, especially in the higher frequency domain. The positional
encoding layer addresses this by transforming these low-dimensional coordinates into
a higher-dimensional space. It applies a series of sinusoidal functions of varying
frequencies to each coordinate, to enable the network to learn the complex mappings
between 3D coordinates and their corresponding color and density values. The enhanced
representation is then fed into the following layers of the network, allowing the MLPs to
learn a more detailed mapping from the input coordinates and angles to the predicted
color and density values. The output of the network is two-headed: it predicts both the
RGB color and the volume density at each point in space.

The heart of NeRF’s functionality lies in its innovative use of volume rendering
techniques as visualized in Figure 3.3. Volume rendering in NeRF involves shooting
rays from the camera’s viewpoint through each pixel in the image plane and into the
scene. As these rays traverse the 3D space, the network evaluates color and density at
several points along each ray. This process is important for simulating how light travels
through the scene, accounting for factors like occlusions and varying densities. The
final color of each pixel is an accumulation of these color contributions, integrated along
the path of the ray. In Equation 3.1, the color value for a ray is depicted. The volume
density function denoted as σ(x), is defined as the likelihood of a ray being absorbed
by an infinitesimally small particle at a given location x. This concept is crucial for
understanding how light interacts with the environment in a 3D space. Additionally,
the color value C(r) is computed for each camera ray r(t) = o + td, bounded by near
and far limits tn and t f . The term T(t) represents the cumulative transmittance along a
ray, signifying the chance of a ray traveling uninterrupted from tn and t f , thereby not
encountering any particles. To render an image using this continuous neural radiance
field, it’s essential to evaluate the integral C(r) for each camera ray that passes through
every pixel of the virtual camera. This method allows NeRF to produce new views of a
scene with remarkable accuracy and detail, effectively capturing complex lighting effects
and the properties of various materials.

C(r) =
∫ t f

tn

T(t)σ(r(t))c(r(t), d) dt, where T(t) = exp
(
−

∫ t f

tn

σ(r(s)) ds
)

(3.1)

Moreover, an essential aspect of NeRF’s process is the calculation of rendering loss
between the ground truth color and the color produced by the model. This is achieved
through a comparison of the rendered image against the ground truth images used for
training. During training, NeRF optimizes the neural network by minimizing this loss,
which is typically computed using a Mean Squared Error (MSE) metric. For each pixel,
the model calculates the difference between the color value rendered by NeRF and the
corresponding color value in the ground truth image. The square of these differences
across all pixels and all training images forms the MSE loss as shown in Equation 3.2

17

3 Fundamentals

where N is the number of data points, x is the predicted value, and y is the ground truth
value.

MSE =
1
N

N

∑
i=1

(xi − yi)
2 (3.2)

Furthermore, the continuous nature of the MLP representation in NeRF allows for
smooth interpolations between different views, resulting in photorealistic renderings.
The architecture, coupled with the volume rendering process, makes NeRF exceptionally
powerful in creating detailed and dynamic 3D models from a collection of 2D images.

While the original NeRF model marked a significant advancement in 3D scene recon-
struction, subsequent extensions have been developed to address its limitations and
improve efficiency. One notable enhancement is Neural Graphics Primitives (Instant-
NGP) [40]. Instant-NGP introduces several key innovations that dramatically enhance
the efficiency and scalability of NeRFs. The main innovation of Instant-NGP is its use
of a multi-resolution hash table to store neural network features. This approach allows
for extremely fast access to these features during the rendering process, significantly
accelerating the training and inference times compared to traditional NeRF implementa-
tions. The multi-resolution hash table in Instant-NGP effectively manages the trade-off
between detail and memory usage. By storing features at multiple levels of resolution,
the model can adaptively choose the appropriate level of detail needed for different
parts of the scene. This not only improves rendering efficiency but also preserves the
high-quality output that NeRF is known for. Additionally, Instant-NGP incorporates
advanced techniques like gradient-based optimization and efficient data structures,
which further contribute to its speed and performance.

Another efficiency-boosting extension is the use of hierarchical sampling strategies.
Unlike the uniform or random sampling in the original NeRF, hierarchical sampling
adaptively allocates more points in regions contributing more to the pixel’s color. This
optimization minimizes unnecessary computations and speeds up the rendering process.

Another noteworthy extension is Mip-NeRF [58]. It is an extension of the original
NeRF model that significantly enhances its handling of texture details and anti-aliasing.
By incorporating a level-of-detail mechanism, Mip-NeRF adjusts the rendering process
based on the distance and viewing angle, improving the representation of fine details and
textures. This mechanism functions by accumulating information across the entire area
covered by a pixel, instead of focusing on a singular point, effectively minimizing aliasing
artifacts. This leads to clearer and more accurate renderings, especially in scenarios
where the same scene or object is viewed from different distances and perspectives.
Mip-NeRF’s approach makes it particularly adept at maintaining the integrity of texture
details in complex 3D scenes.

Further state-of-the-art extensions for NeRFs such as pose refinement, piecewise
sampler, and proposal sampler are detailed as part of Nerfacto’s framework [59] in the
subsequent subsection.

18

3.2 Neural Radiance Field (NeRF) Models

3.2.2 Language Embedded Radiance Field (LERF) Model

The Language Embedded Radiance Field (LERF) [15] introduces an innovative approach
that integrates foundational models such as DINO and CLIP into the framework of
Neural Radiance Fields (NeRF). This innovative approach enables open-ended language
queries and learning image features in 3D volumetric space. By embedding founda-
tion model features within a volumetric scene, LERF enables a more context-aware
interpretation of 3D spaces, enhancing how machines understand and interact with
environments.

LERF extends the capabilities of NeRF by learning a dense, multi-scale feature field.
This is achieved by volume rendering DINO and CLIP embeddings along training rays,
following a technique similar to Mip-NeRF, as outlined in the previous paragraphs and
referenced in [58]. By ensuring that these embeddings remain consistent across multiple
training views, LERF achieves a multi-view consistency. This consistency refines the
smoothness and accuracy of the feature field, enabling the model to capture complex
spatial and textual relationships within the 3D scene.

In the implementation of LERF, the authors adopted Nerfacto [59] as its backbone.
Nerfacto is a framework tailored for capturing real static data. It is not an existing
published work, but an ensemble of many published methods that authors found work
well for real static data. The Nerfacto model combines various effective techniques,
including camera pose refinement, proposal sampling, and scene contraction. Its ability
to densely sample regions with significant contributions to the render, guided by a
density function, is particularly beneficial for enhancing scene reconstruction. Another
aspect behind keeping Nerfacto as a backbone; its proposal sampler and density function
integration are particularly suited for learning scene representation. The visualization
of the pipeline of the Nerfacto model is provided in Figure 3.4. A detailed explanation
of the Nerfacto model is given in the following paragraphs.

Figure 3.4: Nerfacto Model Pipeline [59].

A key aspect of the Nerfacto model within LERF is Pose Refinement. This feature
addresses the common issue of errors in predicted camera poses, which can lead to
artifacts and reduced sharpness in reconstructions. By using the NeRF framework’s
ability to backpropagate loss gradients to input pose calculations, Nerfacto refines these
poses, thereby enhancing the overall quality of the reconstruction.

19

3 Fundamentals

The Piecewise Sampler in Nerfacto, another crucial component, generates scene
samples by distributing them strategically based on their distance from the camera. This
adaptive allocation ensures a balanced and efficient sampling across the entire scene,
enhancing the model’s ability to reconstruct both near and distant objects with equal
precision.

Furthermore, the Proposal Sampler focuses on sampling the most significant regions
of the scene, typically the first surface intersection. This concentration of samples
where they are most needed improves the reconstruction quality. The sampler operates
based on a density function, which is implemented using a small fused-MLP with hash
encoding from tiny-cuda-nn [60]. This method offers both accuracy and speed.

Lastly, the Density Field in Nerfacto is designed to provide a coarse representation of
the scene’s density, guiding the sampling process. By combining hash encoding with a
small fused MLP, they achieve fast querying of the scene. Efficiency is further enhanced
by reducing the encoding dictionary size and the number of feature levels. These
simplifications do not significantly impact reconstruction quality, as the density function
primarily guides initial sampling passes without the need to capture high-frequency
details.

Figure 3.5: LERF model pipeline [15].

The architecture of LERF is illustrated in Figure 3.5, where its structural components
are shown. As previously mentioned, LERF utilizes Nerfacto with its default configura-
tions as a backbone. Within LERF, two distinct heads share a single shared component,
known as the backbone or as a large MLP block. The first head is specifically trained
to capture features for DINO and CLIP, while the second head focuses on generating
standard NeRF outputs, such as color. This separation of heads ensures that the learning
of features does not interfere with the scene representation process. In the feature head,
there are two separate output MLPs, one for CLIP and the other for DINO. Scale ’s’
is passed into the CLIP MLP as additional information along with hashgrid features.
This inclusion of scale information is due to the requirements of the CLIP model. In the
context of CLIP, each rendered frustum is supervised with an image crop of scale ’s’,
centered at the image pixel from which the corresponding ray originated. This approach

20

3.2 Neural Radiance Field (NeRF) Models

ensures that the feature extraction is closely aligned with the specific dimensions and
perspectives of the input images, enhancing the accuracy and relevance of the features
extracted for both DINO and CLIP. While preserving the RGB loss as in Nerfacto, LERF
utilizes an MSE loss for both CLIP and DINO losses, with weightings assigned to each.
These loss functions enable LERF to optimize feature learning in alignment with the
visual correctness of the scene.

Rendering in LERF is the same as NeRF for color embeddings, and density but differs
in handling language embeddings. Language embeddings are rendered along a ray with
scale parameter ’s’ that changes based on focal length and distance, forming a frustum.
As explained in the previous paragraphs, NeRF takes a position and view direction to
output color and density, which are accumulated along a ray for pixel coloration. LERF
extends this by adding a language embedding input with scale parameter ’s’ that are
view-independent and invariant to viewing angles. This embedding allows for semantic
consistency across different views. The scale ’s’, similar to the method employed in
Mip-NeRF, adapt to altering scales within the image.

In the context of rendering language embeddings into an image, LERF calculation
along the ray, r(t) = o + td. For rendering language embeddings, LERF operates over
volumetric fields rather than discrete points, necessitating a scale parameter ’s’ at each
point along the ray. An initial scale, simg, is set within the image plane, and the scale s(t)
at each point is determined as shown in Equation 3.3, increasing in proportion to the
focal length and the distance from the ray’s origin. This setup geometrically constructs
a frustum along the ray path.

s(t) = simg ×
fxy

t
(3.3)

Rendering weights in LERF are computed similarly to NeRF, with T(t) representing
the transmittance function, as shown in Equation 3.4, and w(t) as the rendering weight,
computed as in Equation 3.5. The integration of LERF then yields the raw language
outputs, as depicted in Equation 3.6. Subsequently, each embedding is normalized to the
unit sphere, in line with the approach used in CLIP, where the normalization process is
represented by Equation 3.7. A weighted Euclidean average, followed by normalization,
is used for its simplicity in implementation.

T(t) =
∫ t

tn

exp (−σ(s)ds) (3.4)

w(t) =
∫ t

tn

T(t)σ(t)dt (3.5)

ϕ̂lang =
∫

w(t)Flang(r(t), s(t))dt (3.6)

ϕlang =
ϕ̂lang

∥ϕ̂lang∥
(3.7)

21

3 Fundamentals

The rendering of ϕdino is conducted similarly to ϕlang, as outlined by the equation 3.6.
However, a crucial difference is that ϕdino is not normalized to a unit sphere, and scale
parameter ’s’ is not used which distinguishes it from the ϕlang rendering process. For
ϕdino, rendering weights are computed using the same methodology as ϕlang, with the
transmittance function given by Equation 3.4 and the weight calculation by Equation
3.5. The integration to obtain the raw outputs for ϕdino follows the process described in
Equation 3.8, which does not involve the normalization step and scale parameter ’s’.

ϕdino =
∫

w(t)Fdino(r(t))dt (3.8)

In conclusion, LERF is a significant advancement in integrating foundation models
with 3D reconstruction, opening new research domains in artificial intelligence and
applications. Its unique approach allows reconstructing 3D scenes, and learning DINO
and CLIP features within volumetric feature spaces.

3.3 Cylinder3D Model

Figure 3.6: Cylinder3D Network Pipeline [16].

Cylinder3D’s [16] architecture stands out for its novel approach to 3D semantic
segmentation of LiDAR data. The framework initially transforms point clouds from
a cartesian coordinate system to a cylindrical one, a conversion that is particularly
effective in addressing the varying point densities typically found in LiDAR data from
driving scenarios. This model is innovative in its coordinate transformation, its use
of asymmetric residual blocks, and a unique context modeling technique known as
Dimension-Decomposition based Context Modeling (DDCM). As illustrated in Fig.
3.6, the Cylinder3D framework comprises two main components: the 3D cylinder
partition, which is responsible for obtaining the 3D representation, and the 3D U-
Net-inspired [22] backbone, which processes this 3D representation. U-Net is a type
of CNN originally developed for biomedical image segmentation, recognized for its
effectiveness in classifying pixels in an image as semantic labels. Its architecture is
unique, featuring a symmetric "U"-shaped design that allows for precise localization and

22

3.3 Cylinder3D Model

the use of context, making it highly efficient in tasks requiring detailed image analysis.
Cylinder3D is specifically tailored to suit the properties of outdoor point clouds. This
includes the Asymmetrical Residual Block, designed to match cuboid-based objects
commonly found in driving scenes, such as cars, trucks, and motorcycles. Additionally,
the DDCM module is used to exploit high-rank context information in point clouds
in a decomposition-aggregation manner. This technique decomposes 3D space into
separate dimensions, allowing the model to more effectively understand contextual
information, thereby improving segmentation accuracy. The asymmetric residual blocks
in Cylinder3D are essentially layers that enable the network to learn from residuals or
errors from previous layers, significantly improving learning precision. Furthermore, the
design of these components, including the 4-layer MLP network for cylinder partition
and the U-Net-inspired 3D segmentation backbone, contributes to the performance
of Cylinder3D in 3D semantic segmentation tasks. In the following sections, these
components and their contributions to the model’s performance will be discussed.

The Cylinder Partition process is a crucial component in the pipeline of Cylinder3D,
designed to handle point cloud data effectively. This process begins by transforming
points from the cartesian coordinate system to the cylinder coordinate system. This
transformation is key to accommodating the unique spatial distribution of LiDAR data.
Following this, a cylinder partition step is introduced, which performs voxelization –
a process of converting the data into a grid format in the cylindrical space. The final
stage in the Cylinder Partition process involves the generation of cylinder features. This
is achieved through a simplified version of PointNet [61], which comprises four MLPs.
PointNet is a deep learning architecture designed for processing point clouds. It directly
consumes point clouds and is capable of classifying and segmenting them, making
it innovative for its ability to handle unordered 3D points and recognize 3D shapes.
These MLPs work together to process the voxelized data, finally outputting features in
a 256-dimensional space. This method of feature extraction is particularly effective in
capturing the details and characteristics of the point cloud data, forming the basis for
the 3D semantic segmentation capabilities of Cylinder3D.

The Asymmetric Residual Block in Cylinder3D is designed to address the prevalence
of cuboid objects in autonomous driving scenes. Additionally, it offers a significant
reduction in computational cost compared to conventional 3D convolutional kernels.
For instance, a sequence of convolutions with kernels sized 3×1×3 and 1×3×3 achieves
the same receptive field as a 3×3×3 convolution but with 33% less computational
expense. This asymmetrical residual block forms a fundamental component of both the
downsample and upsample blocks in the network. In the downsample block, it is paired
with a 3D convolution with a stride of 2 for downsampling. In the upsample block, it
integrates low-level features and processes the fused features, enhancing the model’s
efficiency and effectiveness in semantic segmentation tasks.

The DDCM in Cylinder3D addresses the challenge of representing diverse and com-
plex context information in 3D space, which typically requires a high-dimensional tensor.
This approach simplifies the high-dimensional context into several low-dimensional

23

3 Fundamentals

representations across three dimensions: height, width, and depth. Each of these di-
mensions is individually low-dimensional, making the overall context modeling more
manageable. This decomposition-aggregate strategy effectively handles the complexity
of high-dimensional context by breaking it down into simpler views. The model employs
three rank-1 kernels (specifically, 3×1×1, 1×3×1, and 1×1×3) to create low-rank encodings
in each of the three dimensions. The convolution results are then modulated by a
Sigmoid function, which generates weights for each dimension using the rank-1 tensors.
Finally, the model aggregates these low-rank activations, summing them up to represent
the complete context features. This approach allows for efficient and effective modeling
of complex 3D contexts, enhancing the model’s ability to understand and segment 3D
spaces.

In the Cylinder3D framework, the Semantic Head plays the main role in the seg-
mentation process. It receives an input tensor of dimensions C × H × W × L from the
segmentation backbone, where C denotes the feature dimension. Within the Semantic
Head, a 3D convolution layer with a 3×3×3 kernel is used, serving as a lightweight and
effective component for segmentation. This setup leads to the generation of voxel-based
predictions, sized Class × H × W × L, where Class denotes the number of classes, which
are essential for the final segmentation output.

To optimize the network, a combination of cross-entropy loss and Lovasz-Softmax
loss [62] is utilized. Cross-entropy loss is depicted in Equation 3.9, where p is the
number of pixels in the image, yi

∗ ∈ C is the ground truth class of pixel i, fi(yi
∗) is the

network’s prediction of pixel i. Lovasz-Softmax is depicted in Equation 3.11, where
m(c) is the vector of pixel errors for class c, and △Jc is Jaccard index for class c, and
C is all the classes. Given a vector of ground truth labels y∗ and a vector of predicted
labels ŷ, the Jaccard Index of class c is defined as in Equation 3.10. The cross-entropy
loss primarily focuses on maximizing point accuracy, while the Lovasz-Softmax loss is
particularly effective in boosting the recall of rare classes. This enhancement in recall
significantly contributes to an improved mean-intersection-over-union (mIoU) score.
The formula for mIoU is shown in 5.3. Therefore, the total loss function is a sum of these
two components, balancing point accuracy and mIoU optimization. This configuration
ensures efficient training and effective learning, contributing to the high performance of
the Cylinder3D model in semantic segmentation tasks.

CrossEntropyLoss = − 1
p

p

∑
i=1

log fi(yi
∗) (3.9)

△Jc =
{y∗ = c} ∩ {ŷ = c}
{y∗ = c} ∪ {ŷ = c} (3.10)

LovaszSo f tmax = − 1
|C| ∑

c∈C
△Jc(m(c)) (3.11)

24

3.4 Camera Geometry and Projections

3.4 Camera Geometry and Projections

Understanding camera geometry is crucial for the process of capturing and processing
images. It contains a range of elements from both 2D and 3D perspectives. At the core
of this geometry is the camera pose, which refers to the position and orientation of the
camera in a 3D space. This pose is crucial as it determines the viewpoint from which
the scene is captured. Alongside the pose, the camera’s focal length plays a pivotal
role. The focal length, a fundamental part of the camera’s intrinsics, affects the field of
view and the magnification of the captured image. Intrinsics typically encapsulated in
the camera’s intrinsic matrix, include other parameters like the lens distortion and the
pixel dimensions, which are essential in understanding how the camera lens projects the
3D world onto a 2D image plane. Extrinsic parameters are crucial in camera geometry
as they define the camera’s position and orientation in the world coordinate system.
Essentially, these parameters provide a spatial relationship between the camera and the
objects in its view. They are represented by a rotation matrix, R, and a translation vector,
t. These parameters allow us to transform a point from the world coordinate system to
the camera coordinate system. The transformation from world coordinates to camera
coordinates is represented as pcamera = R ·pworld + t, where R is the rotation matrix and t
is the translation vector. To transform coordinates from camera space to world space, the
equation is inverted. The transformation is represented as pworld = R−1 · (pcamera − t),
where R−1 is the inverse of the rotation matrix and t is the translation vector. This
formula effectively reverses the initial transformation by first subtracting the translation
and then applying the inverse rotation.

The projection of 3D points onto a 2D plane involves both intrinsic and extrinsic
parameters. The intrinsic parameters are encapsulated in a matrix, K, which includes
the focal length, the skew coefficient, and the principal point. The projection can be
represented by the following equation:

pimage = K · [R|t] · pworld (3.12)

This equation shows how a point in the world coordinates is first transformed to
camera coordinates using the rotation matrix R and translation vector t, and then
projected onto the 2D image plane using the intrinsic matrix K.

The reverse process, projecting from 2D back to 3D, is more complex due to the loss of
depth information in the projection process. To reconstruct a 3D point from its 2D image
representation, additional data or assumptions regarding the scene’s depth are necessary.
The process involves first transforming the point on the 2D image plane using the inverse
of the intrinsic matrix K−1 and then converting it back to world coordinates. However,
without specific depth information, the exact 3D position remains indeterminate.

3.5 COLMAP

COLMAP [63], [64] is state-of-the-art software for Structure from Motion and Multi-View
Stereo. It stands out in the field of computer vision for its robustness and versatility in

25

3 Fundamentals

3D reconstruction from images. The software automates the construction of 3D models
from image sets. Initially, it begins with feature extraction, where the software detects
distinct points in each image, creating a set of features that can be tracked across the
image set. Following this, it performs feature matching, establishing correspondences
between these features across different images. This process is critical for determining
the relative positions and orientations of the cameras that captured the images. Next,
through the Structure from Motion process, COLMAP estimates the 3D coordinates
of the tracked features and the camera parameters, including position and orientation.
This results in a sparse 3D reconstruction of the scene.

Following camera pose estimation, COLMAP proceeds with dense reconstruction us-
ing Multi-View Stereo algorithms. This phase involves constructing a detailed 3D model
by analyzing multiple image viewpoints, resulting in a dense point cloud that captures
the scene’s intricate geometrical details. In this phase, the software creates a dense point
cloud by examining the images from multiple viewpoints, addressing the sparseness
of the initial reconstruction, and enhancing the detail of the 3D model. Throughout
these stages, COLMAP uses various algorithms to optimize the reconstruction process,
ensuring accuracy and efficiency. The final output is a comprehensive 3D model that
accurately represents the photographed scene, capturing its geometrical and spatial
complexities in high detail.

Fundamentally, COLMAP is an invaluable tool in computer vision, providing an
efficient and automated solution for transforming 2D images into detailed 3D models.
Its combination of robust feature extraction, precise camera pose estimation, and com-
prehensive dense reconstruction capabilities solidify its position as a key resource in the
field of 3D reconstruction and image processing.

26

4 Approach

This chapter provides a detailed explanation of the novel contributions proposed in this
thesis, along with the specifics of the implementation.

4.1 Overview

Figure 4.1: Overview of our approach: In Stage 1, scene-wise NeRFs are trained using images
and their corresponding features, followed by the extraction of features for each
LiDAR scan in the training dataset. Stage 2 involves the training of a generalized
Self-Supervised LiDAR Semantic Segmentation Model, using the extracted features.

Our primary objective is to reduce the reliance on labeled data, thereby enhancing the
self-supervised 3D LiDAR semantic segmentation task with foundation models. This
improvement is achieved through the supervision provided by Neural Radiance Fields
(NeRFs) [13], with a specific focus on the training phase. Our approach involves an
offline sensor fusion strategy, where techniques containing NeRF, foundation models,
and a 3D LiDAR semantic segmentation model are integrated during the training
process. This combination is crucial for exploring and understanding the potential
of NeRF supervision in improving the accuracy and efficiency of 3D LiDAR semantic
segmentation. Significantly, by restricting the multi-modal data processing to the training
phase, our method offers notable advantages in terms of speed and reduced complexity
during the inference stage, thereby allowing real-time application feasibility.

We propose a novel method for supervising a 3D LiDAR semantic segmentation
model using self-supervised DINO [14] features extracted from scene-specific NeRFs.
The pipeline of our proposed method is illustrated in Figure 4.1. Our approach leverages

27

4 Approach

the geometrically aware DINO features provided by NeRFs as self-supervised feature
supervision to enhance the performance and accuracy of the 3D LiDAR semantic
segmentation task.

Our approach is structured into two main stages, as illustrated in Figure 4.1. In the
first stage, we train a NeRF model for each specific scene using images and feature maps
derived from the DINO feature extractor. The focus here is on learning a continuous vol-
umetric feature representation while simultaneously reconstructing the 3D environment
and extracting relevant DINO features. The second stage uses the features obtained from
the trained NeRF model to supervise a generalized model for the 3D LiDAR semantic
segmentation task. This is a key step, as it enables our semantic segmentation model
to incorporate geometrically informed features, significantly improving its ability to
segment objects accurately using both images and 3D LiDAR data even though images
are not given as input. Given that our objective is to train a general 3D semantic seg-
mentation model, at this stage, we broaden the model’s domain from being limited to a
single scene to encompassing the entire training dataset. This expansion into a more
generalized approach significantly accelerates the inference step of our process. As a
result, our model can independently process LiDAR scans without reliance on NeRFs,
allowing for the direct and efficient prediction of semantic labels in the inference step.

4.2 Scene-wise NeRFs

Training scene-wise NeRFs is a critical aspect of our approach, motivated by the need
to effectively model spatial environments within volumetric cube constraints. This
approach addresses several technical challenges and trade-offs, particularly those related
to hardware limitations, computational efficiency, and optimization strategies. Addition-
ally, a significant challenge we face is the extended duration required to train a NeRF
model, which impacts the overall efficiency of our process.

In the context of NeRFs, a volumetric cube refers to the 3D space within which the
NeRF model learns and renders scenes. This space is defined by its volumetric limits,
essentially setting the boundaries for the model’s understanding and reconstruction of
3D environments. One of the primary constraints we encounter is the limited size of
this volumetric cube that a single NeRF model can effectively learn from. Due to these
size limitations, the model’s capacity to accurately represent large or complex scenes
becomes restricted. Techniques like Block-NeRF [65], a variant of NeRF designed to
handle large-scale environments, are crucial for managing this limitation. Block-NeRF
divides large scenes into smaller, manageable blocks, each represented by its own NeRF
model. These individual models are then combined to create a complete representation
of large areas, such as cityscapes. This method overcomes the inherent constraints of the
volumetric cube in standard NeRF models.

Without approaches like Block-NeRF, it becomes challenging to represent large scenes,
such as those from the nuScenes dataset [6], within a single NeRF model. Our dataset,
which includes sequential data from autonomous driving scenarios, inherits this chal-

28

4.2 Scene-wise NeRFs

lenge. In situations where a vehicle is moving along a straight path, capturing the entire
environment within a single volumetric cube is inefficient due to the linear progression
of the scene. This necessitates the use of advanced techniques like Block-NeRF to
effectively model the full extent of these environments, ensuring detailed and accurate
scene reconstruction despite the limitations of the volumetric cube.

To address this challenge, we have adopted a strategy of training a separate NeRF
model for approximately every 13 consecutive LiDAR scans within scenes. This approach
allows us to maintain a high level of detail and accuracy in our environmental modeling.
Moreover, in addition to the nature of our dataset, the precision of DINO features per
point for LiDAR scans is a crucial requirement for our project. Training scene-specific
NeRFs helped to achieve this level of precision. By doing so, each NeRF model is finely
tuned to the specific characteristics of its respective scene, ensuring that the DINO
features extracted are as accurate and informative as possible. This specificity is critical
for the success of our semantic segmentation tasks, as it allows for a more detailed
understanding of the 3D environment.

Another important constraint is hardware limitations, as the intensive computational
demands of NeRF training require high-performance computing resources. This chal-
lenge is further amplified by the necessity for computational efficiency. Optimizing the
training process to maximize efficiency in both time and resources is a delicate task.
This requires maintaining an equilibrium between speed, quality, and the usage of the
computational resources. This constraint sets the maximum number of iterations for the
training of each NeRF model. The extended duration required to train a NeRF model
poses a significant challenge, as it impacts the overall efficiency and feasibility of our
process. This duration constraint not only affects project timelines but also has implica-
tions for the iterative development and refinement of models, thereby influencing the
quality and applicability of the final outputs. Addressing these constraints is necessary
for the successful implementation and advancement of scene-wise NeRFs in modeling
spatial environments.

4.2.1 The NeRF model

We chose Language Embedded Radiance Field (LERF) [15] as our NeRF model, a deci-
sion influenced by several convincing factors. Firstly, LERF is a method from a recently
published paper, ensuring that the model incorporates the latest advancements in the
field. This also means that its codebase is up-to-date, an important consideration for
maintaining compatibility and leveraging recent improvements. The most important
advantage of LERF is its proficiency in learning DINO features effectively, which aligns
perfectly with our project’s focus on extracting precise DINO features for LiDAR scans.
Furthermore, LERF utilizes Nerfacto [59] as its backbone, which is currently the pre-
ferred method for training NeRF models due to its architecture which is a collection
of current best-performing methods for training NeRFs. Another significant aspect
of LERF is its integration with Nerfstudio [59]. Nerfstudio is not only a recent and
actively maintained codebase for NeRF models, but it also offers a real-time web viewer.

29

4 Approach

This viewer is particularly advantageous as it can be operated on Linux servers. By
exporting the port, we can monitor the training process in real-time, greatly assisting in
debugging and validating our implementation. The active community of Nerfstudio
also provides valuable support and insights. Additionally, the public availability of
LERF’s codebase is a crucial factor, as it allows us to develop our method on top of the
existing development. Lastly, the acceptance of LERF into ICCV 2023 emphasizes its
relevance and the recognition it has received in the computer vision community, further
validating our choice.

The LERF introduces a novel integration of foundational models like DINO and
CLIP with NeRF. This integration allows for the processing of open-ended language
queries and the learning of image features in a 3D volumetric space. By incorporating
foundational model features within a volumetric scene, LERF achieves a more nuanced
and context-aware interpretation of 3D spaces, enhancing interaction with various
environments. LERF enhances the capabilities of traditional NeRF by learning a dense,
multi-scale feature field. This is achieved through volume rendering of DINO and CLIP
embeddings along training rays, a technique similar to Mip-NeRF [58]. The focus on
preserving the consistency of these embeddings across multiple views allows LERF to
achieve a multi-view consistency, which enhances the smoothness and accuracy of the
feature field. This is important in capturing complex spatial and textual relationships
within 3D scenes.

We have kept Nerfacto [59] as the backbone in our implementation of LERF. Nerfacto
is a framework tailored for capturing real static data. It is not an existing published
work, but an ensemble of many published methods that authors found work well for
real static data. The Nerfacto model combines various effective techniques, including
camera pose refinement, proposal sampling, and scene contraction. Nerfacto stands out
for its ability to enhance scene reconstruction by densely sampling regions contributing
significantly to the render, guided by a density function.

In the LERF’s implementation, we kept two distinct heads built upon a shared
backbone or a large MLP block. The first head is trained to capture features for DINO
and CLIP, while the second focuses on generating standard NeRF outputs like color. This
multi-head ensures that feature learning does not interfere with the scene representation
process. In the feature head, two separate output MLPs are used for CLIP and DINO.
We also kept MSE loss for both CLIP and DINO losses, alongside the RGB loss from
Nerfacto, to optimize feature learning with visual scene correctness.

We also followed LERF’s rendering process, which mirrors NeRF in terms of color
and density but differs in feature embeddings. Language embeddings are rendered
along a ray with a scale parameter ’s’, adapting to the focal length and distance to
form a frustum. Unlike NeRF, which outputs color and density based on position and
view direction, LERF adds language embedding inputs that are view-independent. This
ensures semantic consistency across different views. The scale ’s’ changes with varying
scales in the image, similar to Mip-NeRF’s method. The rendering of DINO embeddings
is conducted similarly to language embeddings. However, a crucial difference is that

30

4.2 Scene-wise NeRFs

DINO embeddings are not normalized to a unit sphere, and scale parameter ’s’ is not
used which distinguishes it from the language embeddings’ rendering process. Further
details of volume rendering are depicted in the Fundamentals Section.

The only modification we made to the LERF model is implementing the use of
different intrinsics for different cameras, as we have 6 different cameras in the nuScenes
dataset. This allows the LERF model to handle variations in camera parameters such as
focal length, optical center, and lens distortion, ensuring that the rendered images and
extracted features are correctly aligned and accurately represent the scene as captured by
each distinct camera. This adaptation is crucial for maintaining the correctness of the 3D
reconstructions and feature extractions across the diverse range of camera perspectives
present in the dataset.

Notably, Nerfacto models the space within a volumetric cube, which constrains the
number of frames to train the NeRF models on the nuScenes dataset. Thus, our approach
acknowledges the practical limitations posed by the nature of our dataset while still
aiming to achieve the desired performance level.

4.2.2 The Feature Extraction Method

Figure 4.2: Example Screenshots of RGB Renders from Trained NeRF Models

A total of 113 NeRF models were trained, using the training split that we selected
from the nuScenes dataset. As will be detailed in the Dataset Section, our focus was

31

4 Approach

on static scenes. This decision was strategic, allowing for more precise training of our
NeRF models. Each NeRF model was trained using images captured from six different
camera angles. Additionally, all consecutive RGB frames comprising 13 labeled LiDAR
scans were included in the training of each individual NeRF model. Example rendered
images from trained NeRF models are demonstrated in Figure 4.2. This comprehensive
approach ensured that the models were exposed to a wide range of perspectives and
scenarios, further improving the training process. After completing the training process,
as detailed in the subsequent paragraphs, we extracted per-point features from each
scan within these scenes and saved them as tensors for subsequent use. This approach
of saving the extracted tensors significantly improves the overall training speed. The
advantage lies in the reduced need to repeatedly query the NeRF for feature vectors;
instead, we can efficiently utilize the pre-stored tensors. This not only accelerates the
overall training process but also enhances overall computational efficiency by minimizing
redundant queries to the NeRF model. This extraction process provided per-point DINO
features for the subsequent stages of our method, particularly in supervising our 3D
LiDAR semantic segmentation model. An example of extracted features is visualized in
Figure 4.3.

Figure 4.3: 3D Visualization of Extracted DINO Features from Our NeRF Models. PCA applied
for feature visualizations.

The training and feature extraction processes in our approach begin with calculating
poses and camera intrinsics for each camera and the corresponding images used in
training a NeRF model. To achieve this, we utilized COLMAP [63], [64], a robust
structure-from-motion, and multi-view stereo software, to recalibrate and compute the
poses and camera intrinsics. This step ensures that our data aligns consistently with

32

4.2 Scene-wise NeRFs

the Nerfstudio, facilitating a more efficient and accurate training process for our NeRF
models. After applying COLMAP to our training images, we got a transform file that
consists of extrinsic and intrinsics for each training camera and the corresponding images.
After this step, we train each NeRF with the configurations given in the Experiment
Settings Section.

After this point, our goal is to extract DINO features for each LiDAR point in every
LiDAR scan of the training dataset. To accomplish this, we project the LiDAR points
into the trained NeRF world and later sample the corresponding DINO features for each
point within a LiDAR scan with volume rendering techniques. This process of projection,
along with the coloring with labels and DINO feature sampling, is visually depicted
in Figure 4.4. It provides a clear illustration of how the LiDAR points are integrated
into our trained scene and how their features are extracted. This representation helps
in understanding the process of mapping each LiDAR point to our NeRF model and
extracting the relevant DINO features.

The transformation of LiDAR points to our trained NeRF model’s coordinate system
is a complex, multi-step process, described mathematically as follows:

1. LiDAR to Camera Coordinate Transformation:
The transformation process begins with the initial LiDAR points, represented in
their native LiDAR coordinate system as PLiDAR. The primary goal here is to align
these LiDAR points with the camera’s coordinate system. Using the nuScenes API,
we obtain the transformation matrix MLiDAR→Camera. This matrix is necessary for
converting LiDAR coordinates into the camera coordinate system, thereby aligning
the LiDAR data with the visual data captured by the camera. The transformation
is mathematically represented as:

PCamera = MLiDAR→Camera · PLiDAR

2. Camera to COLMAP Camera Coordinate Transformation:
The next step involves transforming these camera coordinates into COLMAP’s
calculated camera coordinate system.
This requires the transformation matrix MCamera→COLMAP, calculated by COLMAP,
and is represented as:

PCOLMAP = MCamera→COLMAP · PCamera

3. COLMAP Camera to NeRF World Coordinate Transformation:
The final transformation step involves converting the COLMAP camera coordinates
into the NeRF world coordinate system. This step is crucial for preparing the
data for query into the NeRF model, which requires data in its specific NeRF
world coordinate system. The NeRF model provides a transformation matrix
and scaling factor MCOLMAP→NeRF and s, which we apply to the coordinates to
accurately position them within the NeRF world. This transformation allows for

33

4 Approach

the projection and fitting of these poses within the volumetric cube of the NeRF
model. This transformation is expressed as:

PNeRF = s · MCOLMAP→NeRF · PCOLMAP

By sequentially applying these transformations to original LiDAR points that lie
in one training camera’s field of view, we map points from their original LiDAR
coordinate system to the NeRF world coordinate system. Each step involves specific
matrix multiplications that accurately align the point cloud data within the context of
our NeRF model’s spatial framework. An example result of this projection is depicted in
Figure 4.4. After completing the first LiDAR to NeRF world projection for one training
camera, we use the coordinates of points in both the LiDAR and NeRF coordinate
systems to acquire a mapping transformation matrix MLiDAR→NeRF. This matrix enables
the direct transformation of points from the LiDAR coordinate system to the NeRF
coordinate system. Subsequently, using the MLiDAR→NeRF matrix, we project all the
points in the LiDAR scan into our NeRF world, as described by the equation:

PNeRF = s · MLiDAR→NeRF · PLiDAR

After projecting LiDAR points into the NeRF world, we extract features using a
technique similar to LERF’s training of its feature network for DINO features. For each
LiDAR point, we generate a ray r(t) = o + td that originates the training cameras and
is directed to the calculated positions of the LiDAR points in our NeRF world and
input this ray into our trained NeRF model to accumulate the DINO feature vector. The
output, consisting of DINO features, is captured and stored. The data obtained after the
extraction process is visually depicted in Figures 4.4 and 4.5. To extract these features,
our approach involves volume integration within the LERF to accumulate features. This
process is described by the following equation:

ϕdino =
∫

w(t)Fdino(r(t)) dt

In this equation, ϕdino represents the accumulated feature vector derived from DINO
features along a ray. The integration is performed over the rendering weights w(t),
computed as in Equation 3.5, and the feature vector Fdino(r(t)) at each point r(t) along
the ray. This process differs from ϕlang done in LERF for CLIP features, as it does
not involve normalization to a unit sphere nor the use of a scale parameter ’s’. The
rendering weights and transmittance function are calculated using the methodology of
ϕlang with adaptations specific to ϕdino, as outlined in Equations 3.4 and 3.5. The output,
which consists of DINO features, is then saved for further supervision in the 3D LiDAR
semantic segmentation model.

34

4.3 3D Semantic Segmentation Model

Figure 4.4: Screenshots from Nerfstudio’s Viewer: The top left shows the rendered RGB image.
The top right displays the rendered DINO features. The bottom left illustrates the
projection of labeled points within the ’Front Left Camera’ into our NeRF world. The
bottom right presents the corresponding DINO features of these projected points.
PCA applied for feature visualizations.

Figure 4.5: Projection of LiDAR Points into NeRF World with Learned DINO Features. PCA
applied for feature visualizations.

35

4 Approach

Figure 4.6: Overview of Our 3D Semantic Segmentation Model Pipeline: The pipeline begins
with the input of LiDAR points and extracted DINO features from our NeRF models
into the Cylinder3D backbone. Following the backbone, the pipeline includes two
components: the Semantic Head, responsible for predicting semantic labels, and the
Feature Head, focused on predicting DINO features.

4.3 3D Semantic Segmentation Model

4.3.1 The Backbone

The pipeline we have used for utilizing the learned 3D features is depicted in Figure
4.6. In this pipeline, for the backbone of our 3D LiDAR semantic segmentation, we have
selected Cylinder3D [16]. Specifically, we utilized the implementation of Cylinder3D
as presented in the LaserMix [10] paper. To integrate our approach into this setup,
we added a feature head to the model. This addition is designed to effectively use
the extracted per-point features, integrating them into the segmentation process. This
integration is crucial for improving the accuracy and effectiveness of our 3D LiDAR
semantic segmentation, making the most of the detailed features extracted from our
unlabeled data. The advantages of this integration will be discussed in the Feature Head
Section.

We chose LaserMix’s codebase for several reasons. One of the most important reasons
is its recent development, which incorporates the latest versions and methodologies.
The open-source nature of LaserMix is advantageous, allowing us direct access to
the codebase and modify and adapt it to our specific approach. However, while
the codebase lacks components for unsupervised training, it does provide a well-
implemented backbone for the Cylinder3D model. Additionally, the implementation of
a data loader for the nuScenes dataset significantly helped our data handling process.
The credibility of LaserMix is also supported by its acceptance and publication in CVPR
2023, a highly esteemed conference in the field. Furthermore, the active engagement
of the authors, demonstrated by their responsiveness to issues, provided an additional
layer of reliability to the project.

Cylinder3D’s architecture offers a novel approach to 3D semantic segmentation of

36

4.3 3D Semantic Segmentation Model

LiDAR data, transforming point clouds from cartesian to cylindrical coordinates, which
addresses the variable point densities in LiDAR data from driving scenarios. Funda-
mental to the architecture of this model are its innovative coordinate transformation,
the use of asymmetric residual blocks, and a specialized context modeling technique
called Dimension-Decomposition based Context Modeling (DDCM). As depicted in
Fig. 3.6, Cylinder3D integrates a 3D cylinder partition for creating 3D representations
and a 3D U-Net-inspired backbone for processing these representations. Cylinder3D
tailors its approach for outdoor point clouds, especially with its Asymmetrical Residual
Block suitable for cuboid objects like vehicles, and the DDCM module, which effectively
processes high-rank context information by decomposing 3D space into separate dimen-
sions for enhanced segmentation accuracy. These asymmetric residual blocks are crucial
for learning from previous layers’ errors, thus refining learning precision. The overall
design, including the 4-layer MLP for cylinder partitioning and the U-Net-based 3D
segmentation backbone, significantly elevates Cylinder3D’s effectiveness in 3D semantic
segmentation.

4.3.2 The Feature Head

In our proposed model, we have adapted the Cylinder3D model as a backbone to not
only learn from labeled data but also to incorporate learning from extracted DINO
features. This modification, as shown in Figure 4.6, involves a significant architectural
change, allowing the model to learn from feature supervision. The integration of a
feature head alongside the main Cylinder3D model brings several key benefits.

One of the advantages of this approach is the improved feature extraction capability.
By utilizing a shared backbone between the semantic segmentation and feature heads,
the model benefits from a more comprehensive feature extraction process. This shared
model ensures that the backbone is optimized to learn both semantic understanding and
feature learning tasks, enhancing the overall quality of feature extraction. Additionally,
consistency in feature learning is another significant benefit. With a shared backbone,
the features learned for both semantic understanding and specific feature learning are
consistent. This ensures that the features are representative of the same underlying data
distribution and characteristics, which is beneficial for the effectiveness of the model to
accurately predict semantic classes. Moreover, the shared backbone acts as a form of
regularization, helping to prevent overfitting. Since the backbone layers must generalize
well across two different tasks, they are likely to learn more robust and generalizable
features.

In our model, from the Dimension-Decomposition based Context Modeling (DDCM)
module of the Cylinder3D backbone, we acquire 64-dimensional per-point features from
voxels. In parallel, in the semantic head, these 64-dimensional voxel features are used
for calculating logits for semantic labels. Additionally, we have 256-dimensional cylinder
features for each point which are obtained from the ’Cylinder Partition’ part of the
Cylinder3D architecture, as outlined in The Fundamentals Section. By concatenating
these two feature sets, we obtain a comprehensive 320-dimensional feature set for each

37

4 Approach

point in a LiDAR scan. This approach is essential for guaranteeing distinct per-point
features since the features derived from DDCM alone are not sufficiently distinctive
within the same cylindrical voxel. This is because DDCM-derived features are sampled
from cylindrical voxel grids. The process of sampling voxel features involves collecting
sets of features for the points contained within a single grid block. As a result, points
that lie in the same block share the same features, which limits the ability to distinguish
features on a per-point basis. Another important aspect of this process is avoiding
backpropagation of the loss through the cylinder features which are obtained from the
beginning of the Cylinder3D backbone, from ’Cylinder Partition’, to prevent the model
from shortcutting and to ensure the training of all parts of the Cylinder3D backbone.

Following the concatenation of 64-dimensional per-point voxel features from DDCM,
and 256-dimensional point features from ’Cylinder Partition’, we introduce two MLP
layers with a dimension of 384, employing leaky ReLU activation functions and batch
normalization. The output dimension of the MLP layers is set to 384, corresponding to
the dimension of the DINO features extracted from NeRFs, which are also 384. This
selection is further explained and discussed in the Ablation Study Section. The output
from this MLP head is then used to calculate the loss between the predicted features and
the extracted features from the NeRF model. This comprehensive approach, leveraging
the benefits of a shared backbone and feature head, significantly enhances the model’s
capability in semantic segmentation tasks by integrating per-point DINO features.

To optimize our network, we adopted a strategy similar to the one used in the
Cylinder3D model, with some key additions customized to our specific requirements.
The optimization process for default Cylinder3D involves a combination of cross-entropy
loss and Lovasz-Softmax loss for increasing point accuracy and the mIoU metrics which
are shown in Equations 3.9 and 3.11. In our implementation, these two losses are kept
as same, ensuring a balanced contribution to the overall training process. In addition
to these losses, we introduced an extra component to the loss function: the MSE loss,
which is depicted in Equation 3.2. This MSE loss is calculated between the outputs of
the feature head and the extracted DINO features from our NeRF models. Since we are
doing a regression task, we chose MSE loss due to the faster convergence compared to
the cosine similarity loss. The total loss function of our network is composed of the cross-
entropy loss, Lovasz-Softmax loss, and weighted feature loss. This configuration, with
cross-entropy loss optimizing for accuracy, Lovasz-Softmax loss enhancing the recall
of rare classes, and feature loss improving feature representation, is key for efficient
training and effective learning. It ensures that the network not only improves semantic
segmentation accuracy but also effectively integrates and uses the features extracted
from the NeRF models. This approach significantly contributes to the improvement of
the Cylinder3D model, particularly in the self-supervised semantic segmentation tasks.

To supervise the learned 3D features from NeRF models, we implemented a training
design that efficiently utilizes both labeled and unlabeled data through two parallel
data streams, each contributing uniquely to the learning process. In our training loop,
with N representing our batch size, we load N/2 labeled data points for each pass

38

4.3 3D Semantic Segmentation Model

through the network. Feature supervision is provided for all N data points. During one
epoch, we iterate through the entire training dataset once to train with all the extracted
features from the trained NeRF models. However, due to the smaller number of labeled
LiDAR scans compared to the total available, we repeatedly loop through the labeled
data loader until all unlabeled data have been processed.

The feature head is dedicated to learning DINO features extracted from NeRFs
using all samples in a batch, while the semantic head maps the backbone’s features
to meaningful semantic labels using the labeled data. This dual functionality enables
accurate prediction of object classes within scenes, the advantages of this approach
are detailed in the previous section. Simultaneously training with both labeled and
unlabeled data streams, the model leverages information from both to enhance its
learning capabilities. Both data streams are utilized to train the feature head and
the shared Cylinder3D backbone. This strategy, which includes integrating features
extracted from NeRFs, allows the model to develop a deeper understanding of the 3D
environment. Such a comprehensive training approach ensures the model maximizes
the benefits from the various data available, significantly improving its performance in
semantic segmentation tasks. An example of learned features is visualized in Figure 4.7.

Figure 4.7: 3D Visualization of Features Predicted by the Feature Head in Our 3D Semantic
Segmentation Model

39

5 Evaluation

This chapter presents Experiment Settings, Ablation Study, and Final Model. In the
experiment settings, we provided information about the dataset that is used in the
following experiments, the baseline model, our model, the camera projection model, and
the semi-supervised setup. Then ablation study shows the different experiments done,
and their interpretations. In the last part, we provide more results from the selected
best-performing model and interpret its results quantitatively and qualitatively.

5.1 Experiment Settings

5.1.1 Dataset

Our primary contribution centers on leveraging features extracted from NeRFs, necessi-
tating high-quality NeRFs both in terms of DINO feature representation and accurate
capture of the environment’s geometry. A crucial requirement for our dataset is com-
prehensive RGB information, captured from a wide range of angles relative to the ego
vehicle. This comprehensive angular coverage is essential to effectively capture and
learn the 3D environment.

In the following paragraphs, we will dive into the specifics of our dataset selection
process, detailing the criteria and considerations that guided our choice.

SemanticKITTI [8], [9] and its recent variant, ScribbleKITTI [66], were introduced
in 2019 and 2022 respectively. SemanticKITTI offers a considerable volume of data,
comprising a total of 23201 annotated LiDAR frames for training and validation. How-
ever, a significant limitation of these datasets is their reliance on a single front-facing
camera. This setup restricts the ability of our NeRF model to effectively capture the
3D environment, particularly in areas that lie behind or to the sides of the vehicle,
which is crucial for extracting meaningful features for the LiDAR scans. Furthermore,
while ScribbleKITTI builds upon SemanticKITTI by providing annotations in the form
of line scribbles instead of dense annotations, it inherits the same camera setup and
therefore does not meet our requirements for comprehensive environmental capture
from multiple angles.

The Waymo Open Dataset [7], introduced in 2020, presents another option for our
project. It contains a notable volume of data, with 1000 scenes for training and validation,
each providing 20 seconds of footage and annotated at 10 Hz, amounting to a total
of 200000 annotated LiDAR frames. A notable improvement over the SemanticKITTI
and ScribbleKITTI datasets is the usage of five cameras, covering the front, front-left,
front-right, side-left, and side-right perspectives as shown in Figure 5.1. While this

41

5 Evaluation

setup offers a more comprehensive capture of the environment compared to a single
front-facing camera, it still falls short in one critical aspect – the lack of rear-facing
cameras. Consequently, while decent NeRF models can be trained using this five-
camera configuration, the representation of the environment behind the vehicle remains
insufficient. This limitation particularly impacts the quality of extracted DINO features
for LiDAR scans from the rear, as they cannot be effectively trained with the camera
setup that Waymo provides. Furthermore, a significant challenge in using the Waymo
Open Dataset is the absence of an established benchmark. This absence makes it difficult
to evaluate and compare the performance of our work in the context of 3D LiDAR
semantic segmentation.

Figure 5.1: Overview of the Camera Setup in the Waymo Dataset [7]

The nuScenes dataset [6], released in 2020, appears as a particularly suitable choice for
our project. It contains 850 scenes for training and validation, with annotations provided
at 2Hz, resulting in a total of 35149 annotated LiDAR frames. A distinctive feature of
nuScenes is its six cameras setup, strategically positioned to cover 360 degrees around
the vehicle as visualized in Figure 5.2: front, front-left, front-right, back, back-left, and
back-right. This extensive camera setup enables the creation of NeRF models that can
effectively capture and reconstruct the entire surrounding environment of the vehicle,
with RGB images providing views in every direction. The ability to train NeRF models
with such a comprehensive environmental range is a crucial factor in our decision to
proceed with the nuScenes dataset. Its 360-degree capture capability aligns perfectly

42

5.1 Experiment Settings

with our project’s requirements, ensuring that our NeRF models are well-trained by
diverse visual inputs from all around the vehicle.

Figure 5.2: Overview of the Camera Setup in the NuScenes Dataset [6]

Further, the nuScenes dataset includes 1000 driving scenes, each 20 seconds long
and recorded in challenging urban landscapes of Boston and Singapore. The nuScenes
dataset provides annotations for 23 object classes with 3D bounding boxes at a 2Hz
frequency across the entire dataset. Furthermore, the nuScenes-lidarseg extension is
the required part to use this dataset on our project. It offers extensive LiDAR point
annotations, with each point in a keyframe labeled with one of 32 possible semantic
categories. This results in 1.4 billion annotated points across 40000 pointclouds and 1000
scenes. An example annotation is visualized in Figure 5.3.

In our study, we selected 1456 scans for training, and the 6,019 scans designated for
validation split were kept during this phase. These training scans, chosen from 84 diverse
scenes, encompass a wide range of environmental conditions, ensuring a comprehensive
training process. During the self-supervised training phase, all 1456 scans were used
consistently. For label supervision, we utilized up to 728 labeled scans, which is 50%
of the total, while all scans were used for unlabeled feature supervision, allowing
our models to effectively learn from both types of data. This approach enhanced
learning from both labeled and unlabeled data. The dataset was tailored for static
scenes, reducing from 700 to 84 scenes, due to the suitability of the NeRF models for
static environments and the challenges posed by dynamic objects, rain, and low light
conditions. Detailed information about the usage of labeled scans is further explained
in the Semi-Supervised Setup Section.

We customized the training dataset to align with our methodological requirements,
focusing on mostly static scenes. This decision was influenced by several challenges
encountered in our initial dataset including 700 training scenes, leading us to reduce
the number to 84. The primary reason for this reduction is the inherent nature of

43

5 Evaluation

Figure 5.3: Annotated LiDAR Scan: Example from nuScenes Dataset

NeRF models, which are best suited for static environments. They require static scenes
to accurately capture and model light and color, and dynamic objects in the scene
can significantly disrupt the training process without advanced masking techniques.
Additionally, we excluded rainy scenes to avoid the visual noise caused by raindrops,
which could degrade the quality of our training data. Lastly, the heavy reliance of
NeRFs on light information made it impractical to include night scenes in our training
dataset, as they could negatively affect model performance.

5.1.2 Baseline Settings

Our baseline method is a ’supervised-only’ model, meaning it utilizes only labeled
data for training and validation. This approach demonstrates the model’s effectiveness
and capabilities without relying on feature supervision, providing a clear standard for
performance evaluation. We adopted LaserMix’s implementation of the Cylinder3D
model, which they also used as a ’supervised-only’ baseline. This implementation
operates on point cloud data, converting it into three-dimensional cylindrical voxels.
This novel approach diverges from traditional voxel representation, offering specific
advantages for processing LiDAR data in 3D environments. The details of this model
are explained in the Fundamentals and Approach Section.

We used the Cylinder3D model with its original configurations, including 56.26
million parameters and a voxel resolution of [480, 360, 32]. Given a predefined voxel
resolution, points in the cylinder coordinate can be partitioned into the corresponding
voxel cells. The semantic labels are split into partitioned cylinder voxels, where all points

44

5.1 Experiment Settings

within the same voxel are assigned a unified label via majority voting. For cylindrical
representation, training losses are calculated on the voxel predictions of size [k, 480, 360,
32], where k denotes the number of semantic classes.

Additionally, we set the bounds for voxelization at a maximum of [50, 180, 2] and
a minimum of [0, -180, -4]. The dimensionality of the input point features was fixed
at 9. We initialized our cylindrical model with a size of 16, to begin with, and set the
training to run for 50 epochs. A combination of cross-entropy loss and Lovasz-Softmax
loss [62] is utilized. Cross-entropy loss and Lovasz-Softmax are depicted in Equations
3.9 and 3.11. The optimization of the model was done by using Stochastic Gradient
Descent (SGD) with a momentum of 0.9, a weight decay of 0.0001, and an initial learning
rate of 0.25. To adjust the learning rate, we used a scheduler based on the ’onecycle’
policy, which is designed to converge the training faster by cyclically adjusting the
learning rate.

To enhance the model’s ability to generalize and prevent overfitting, we used several
data augmentation techniques. The flip augmentation was applied in a randomized
manner where the data might not be flipped or flipped along the x-axis, y-axis, or
both. Scaling augmentations were also random, with the scale factor varying between a
decrease of 5% and an increase of 5%. Rotation was introduced by randomly rotating
the data through any angle between -180 and +180 degrees. Lastly, jitter augmentation
was used to introduce a small, normally distributed random noise to the data points.
These augmentations collectively aimed to create a robust model capable of handling
various transformations and perturbations in the input data. Other than the number of
epochs, the rest of the configurations are kept the same as LaserMix’s configurations.

There are a couple of differences between our baseline and LaserMix’s ’supervised-
only’ baseline. As mentioned in the previous subsection, we only selected static scenes
from the training dataset while LaserMix used all the available data from nuScenes.
Additionally, we trained our models with 50 epochs while they trained their baseline
model with different numbers of epochs for each split. Despite this change in the
training dataset, we maintained methodological consistency with LaserMix, such as
using the same validation split and training configs.

5.1.3 NeRF Settings

For our LERF model’s backbone, we used most of the default configurations of the
Nerfacto model, as was also the case for the LERF model. The Nerfacto model consists
of two main MLPs, one dedicated to density and the other to RGB color processing.
The hidden layer dimension for both the density and the RGB MLPs is set to 64 by
default. This dimension is a crucial factor in the model’s capability to accurately process
and represent the density and color information of a scene. In terms of its hashmap
structure, the model is configured with 16 levels. The base resolution of the hashgrid is
set at 16, while the maximum resolution for the hashmap in the base MLP is established
at 2048. The size of the hash table is 219. These resolutions are key to achieving detailed
and precise scene reconstructions. Additionally, the default loss function for the RGB

45

5 Evaluation

component is the MSE loss as shown in Equation 3.2 where N is the number of data
points, x is the predicted value, and y is the ground truth value. This choice is indicative
of the model’s focus on color representation, ensuring that the output closely mirrors
the real-world visual data.

In the implementation of LERF, several modifications were on the details of the
Nerfacto network. Specifically, the number of samples in the proposal sampling process
was reduced from 48 to 24, a change that significantly accelerates the training process.
For CLIP feature learning, the OpenClip ViTB/16 model [25], trained on the LAION-2B
dataset [67] is used. This model employs an image pyramid with scales varying from a
minimum of 0.05 to a maximum of 0.5, distributed across seven steps. Regarding DINO,
the dino-vits8 model, trained on the Imagenet-1k dataset [26] and optimized for 8x8
image patches, is used. The hashgrid used for training language features in LERF is
larger than the RGB hashgrid used in the Nerfacto model. It consists of 32 layers, with
resolutions ranging from 16 to 512, and features a hash table size of 221 and a feature
dimension of 8. The MLP for CLIP incorporates three hidden layers with a width of 256,
in the final 512-dimensional CLIP output. For DINO feature extraction, the MLP has
a single hidden layer with a dimension of 256 and in the final 384-dimensional DINO
output. The Adam optimizer was used for both the proposal networks and fields, with
a weight decay of 10−9. An exponential learning rate scheduler was used, reducing the
rate from 10−2 to 10−3 over the first 5000 training steps. The models were trained for a
total of 30000 steps. In terms of loss weighting, a lambda value of 0.1 was used for the
CLIP loss and 1.0 for the DINO loss. The MSE loss is used for CLIP and DINO losses.
The equation for MSE loss is depicted in 3.2.

Featureloss = 0.1 ∗ CLIPloss + 1.0 ∗ DINOloss (5.1)

5.1.4 3D LiDAR Semantic Segmentation Model Settings

We used the Cylinder3D model as a backbone, with its original configurations, including
56.26 million parameters and a voxel resolution of [480, 360, 32]. Training losses, cross-
entropy loss, and Lovasz-Softmax loss are calculated on the voxel predictions of size [k,
480, 360, 32], where k denotes the number of semantic classes. Cross-entropy loss and
Lovasz-Softmax loss are shown in Equations 3.9 and 3.11. As mentioned before, feature
loss, MSE is calculated on the output of the feature head which is [N, 384], where N
denotes the number of points. Feature loss, MSE depicted in Equation 3.2. Additionally,
we set the bounds for voxelization at a maximum of [50, 180, 2] and a minimum of [0,
-180, -4]. The dimensionality of the input point features was fixed at 9. We initialized
our cylindrical model with a size of 16 and set the training to run for 50 epochs. The
optimization of the model was done by using SGD with a momentum of 0.9, a weight
decay of 0.0001, and an initial learning rate of 0.25. To adjust the learning rate, we used a
scheduler based on the ’onecycle’ policy [68], which is designed to converge the training
faster by cyclically adjusting the learning rate.

To enhance the model’s ability to generalize and prevent overfitting, we used several

46

5.1 Experiment Settings

data augmentation techniques. The flip augmentation was applied in a randomized
manner where the data might not be flipped or flipped along the x-axis, y-axis, or
both. Scaling augmentations were also random, with the scale factor varying between a
decrease of 5% and an increase of 5%. Rotation was introduced by randomly rotating
the data through any angle between -180 and +180 degrees. Lastly, jitter augmentation
was used to introduce a small, normally distributed random noise to the data points.
These augmentations collectively aimed to create a robust model capable of handling
various transformations and perturbations in the input data.

5.1.5 The Camera Projection Model

We implemented and trained a camera projection model with our dataset. It is essential
for several reasons, especially when evaluating the performance of 3D semantic segmen-
tation models that rely on sensor fusion. Firstly, having a baseline, or ’vanilla’, model
provides a standard against which we can measure any enhancements or modifications
we apply to our model. This comparison is crucial for validating the effectiveness of our
approach. Furthermore, incorporating a straightforward, commonly accepted methodol-
ogy for unsupervised feature supervision into our evaluation framework allows for a
clear understanding of our model’s capabilities. By comparing our model’s performance
with another that employs feature supervision, we can see the effectiveness and potential
improvements of our approach.

The camera projection model and our model offer distinct approaches to feature
extraction, each with its unique advantages. The camera projection model is simple
and direct. By projecting LiDAR points onto camera images, it can immediately extract
DINO features from the RGB data for those points that are within the camera’s field
of view. Since the projection technique is the same as used in our model, its steps can
be found in the Approach Section. This method is efficient because it bypasses the
need for complex training processes, allowing it to operate without the time-intensive
task of training NeRFs for each scene. In contrast, our model trains NeRFs with both
RGB images and their associated DINO features. This enables it to reconstruct a three-
dimensional environment and extract features for each LiDAR point, including those
not directly visible to the cameras. Therefore, while our model requires a significant
investment in training NeRFs for each scene, it benefits from the ability to sample
features across the entire range of the LiDAR scan. Moreover, the camera projection
model limits its feature loss calculation to points that are captured by the camera’s view,
our model extends this calculation to every point captured by the LiDAR, offering a
more comprehensive evaluation of feature loss.

The model architecture is kept as same as our model. The camera projection model’s
approach might be preferable for applications that require speed and simplicity, whereas
our model is suited for scenarios where a more thorough scene understanding is
beneficial.

47

5 Evaluation

5.1.6 Semi-Supervised Setup

In our approach, we developed a semi-supervised learning setup to effectively lever-
age both labeled and unlabeled data. This approach was crucial for overcoming the
challenges caused by the limited availability of densely labeled LiDAR datasets in the
autonomous driving domain. Our methodology randomly selects 1%, 10%, 20%, and
50% splits from the available static scenes, using these subsets as our "labeled" data.
We chose these varying percentages to analyze the impact of unlabeled supervision on
the model’s performance and evaluation metrics across different volumes of labeled
data. While the labeled data was restricted to these splits, the "unlabeled" data — used
for extracting and learning representative features — used all available static scenes.
This approach allowed for the capture of comprehensive and rich feature representa-
tions, enhancing the model’s ability to understand the data, even within the unlabeled
partition.

This semi-supervised setup enabled us to maximize the information extracted from
our limited labeled data while still capitalizing on the vast amount of information
present in the unlabeled data. The incorporation of DINO features, known for their
effectiveness in capturing fine-grained details and high-level representations, further
enhanced our model’s performance, enabling it to generalize well across various levels
of labeled data availability.

To evaluate our model, we used Intersection-over-Union (IoU), Jaccard index, per
semantic class. Given a vector of ground truth labels y∗ and a vector of predicted labels
ŷ, the IoU of class c is defined as in Equation 5.2. Further, we used mIoU for all classes
as shown in Equation 5.3 where C is the number of classes, and semantic label accuracy
as shown in Equation 5.4 as our key metrics. IoU for each semantic class offered a
detailed view of the model’s performance across various categories. Meanwhile, mIoU
measured the model’s overall segmentation ability across all classes. Label accuracy
was also crucial, reflecting the model’s ability to correctly identify and assign labels,
an important part of semantic segmentation tasks. Additionally, we calculated these
metrics for both voxels and points. We obtained per-point metrics through trilinear
interpolation, helping us understand the model’s performance per point in the 3D space.

IoUc =
Areao f Overlap
Areao f Union

=
{y∗ = c} ∩ {ŷ = c}
{y∗ = c} ∪ {ŷ = c} (5.2)

mIoU =
∑c∈C IoUc

C
(5.3)

Accuracy =
TruePositive + TrueNegative

AllSamples
(5.4)

We conducted our experiments in a Linux environment, using the PyTorch framework
on an NVIDIA Tesla V100 SXM2 GPU with 16 GB of RAM. Each 3D LiDAR semantic
segmentation model took approximately 6 hours to train 50 epochs and each NeRF
model took approximately 3 hours to train.

48

5.2 Ablation study

5.2 Ablation study

To determine the final model design, we conducted a series of experiments aimed at
addressing specific challenges and optimizing the model’s overall performance:

Addressing Shape Mismatch: Our initial focus was on resolving the shape mismatch
observed in feature regression. The experiments compared the effectiveness of directly
regressing features with adding a feature head, specifically analyzing the impact of dif-
ferent output dimensionalities (64 and 384). This comparison was crucial in determining
whether a more complex feature head would provide significant benefits over a simpler
direct regression approach.

Evaluating the Benefit of Per-Point Information: To address the issue of different
points having identical features but different labels, we conducted two experiments:
the concatenation of per-point features and the summation of per-point features. This
experiment was designed to assess whether providing the model with explicit per-point
information would enhance its ability to distinguish points with the same features but
different labels, thereby improving the overall accuracy of the segmentation.

Assessing the Impact of Feature Weight: Finally, we experimented with different
feature weights to understand their effect on the model’s performance. We compared
the results using feature weights of 0.1, 0.5, 1.0, 2.0, 3.0, and 6.0. This experiment was
essential to determine the optimal balance in feature weighting.

Below, we will describe each experiment in detail to tackle the previously mentioned
issues.

Direct Regression of DINO Features: It initially appeared to be a viable method,
using 64-dimensional voxel features to regress DINO features, which were reduced to
64 dimensions using PCA. However, this resulted in information loss due to using
64-dimensional feature targets. Moreover, the constraint of assigning uniform features
within the same cylindrical voxel limited per-point feature learning. The preliminary
results showed poor feature learning, confirming our concerns.

Addition of a Feature Head: To enhance feature regression, we introduced a feature
head containing two MLPs. We experimented with varying output dimensions, and
our initial findings revealed that higher dimensionality correlated with better feature
learning and better mIoU. Preliminary results indicated an improvement in feature
learning with increased dimensionality, suggesting that the model could effectively learn
more complex, high-dimensional features.

Concatenation of Per-Point Features: By detaching per-point features early in the
network and concatenating them with voxel-derived features, followed by the addition of
two MLP layers, we observed a significant improvement in the model’s feature-learning
capability. This method’s effectiveness is likely due to the use of enriched information
available in the model by combining both voxel-level and point-level features. Initial
results showed that this method is promising.

Summation of Per-Point Features: This technique is almost the same as the ’con-
catenation of per-point features’ but the only difference is instead of concatenation, we

49

5 Evaluation

added voxel-level and point-level features together. As from previous works, we expect
that concatenation will work better than summation and preliminary results confirmed
our expectations.

Adjusting Feature Weights: Our initial experiments with varying feature weights
showed that decreasing the feature weight increases the performance of the model in
terms of evaluation metrics.

Each of these experiments was important in choosing the final model design. They
were aimed not only at addressing specific issues we identified but also at directly
comparing different approaches under the same conditions. The insights gained from
these comparative analyses allowed us to make informed decisions about the most
effective strategies and configurations for our final model.

In Table 5.1, we compare the approaches mentioned above. Each experiment was
conducted using a 10% split of the data and was trained for 50 epochs. Although the
addition of a 384-dimensional feature head achieved the highest mIoU, we also evaluated
their performance in feature learning. The concatenation of per-point features yielded
slightly better performance. Theoretically, the idea behind concatenating per-point
features convinced us to proceed with this method.

Experiment Name mIoU Accuracy
Direct Regression 28.6 78.3
Sum. of Point Feats. 38.8 85.2
Concat. of Point Feats. 40.1 85.6
Feature Head 384 Dim. 40.4 85.5
Feature Head 64 Dim. 31.4 80.0

Table 5.1: mIoU and Accuracy Metrics for the Ablation Study.

In Figure 5.4, we examine the impact of using different feature weights during
training. These experiments were performed using a 10% data split and, due to the
lengthy training times, we limited this comparison to 25 epochs.

Finally, we selected a 0.5 feature weighting and point concatenation as our final
model configuration. This decision was based on a comprehensive evaluation of the
model’s performance with various feature weighting schemes. The 0.5 feature weighting,
when combined with point concatenation, provided a balanced approach that leveraged
the strengths of both feature learning and the robustness of concatenated per-point
features. This configuration was not only theoretically sound but also analytically
validated through our testing, showing promising results that support our confidence in
its potential for accurate and efficient semantic segmentation.

50

5.3 Final model

0.1 0.5 1 2 3 6

34

35

36

37

38

Feature Weight

m
Io

U

Figure 5.4: The Relationship Between Feature Weight and mIoU.

5.3 Final model

5.3.1 Interpreting Results

Split Model mIoU acc barr bicy bus car const moto ped cone trail truck driv othe walk terr manm veg
Vanilla 23.3 77.5 0.4 0.0 0.0 61.7 0.0 3.9 1.4 0.1 8.5 5.1 83.6 6.5 22.0 52.2 64.8 62.7
Our Model 23.4 77.9 0.7 0.0 0.0 64.2 0.0 2.1 2.1 0.1 9.6 4.1 84.2 6.2 24.5 49.7 65.9 61.7%1
Camera Proj. 23.5 77.8 0.9 0.0 0.0 60.9 0.0 2.0 2.3 0.1 8.7 3.9 84.2 10.0 22.8 51.3 66.4 62.6
Vanilla 39.3 85.5 24.0 0.3 0.8 78.5 2.3 26.7 52.2 13.7 22.5 44.0 90.2 10.4 47.1 63.1 76.4 77.1
Our Model 40.0 85.7 24.3 0.3 0.7 77.2 2.6 31.2 51.3 14.5 21.9 45.0 90.7 15.3 48.8 63.3 76.3 77.1%10
Camera Proj. 40.8 86.0 25.6 0.4 0.6 77.7 2.8 32.2 52.1 14.3 25.1 48.3 91.3 16.3 49.2 63.0 76.7 77.5
Vanilla 41.6 86.7 23.4 2.0 1.6 78.9 4.0 28.8 55.2 23.5 25.9 47.2 91.9 8.9 54.0 64.9 78.2 78.4
Our Model 42.7 86.6 25.2 2.8 0.8 78.1 5.4 36.3 54.8 20.5 25.2 49.3 91.6 19.6 53.3 64.9 78.0 78.3%20
Camera Proj. 43.1 86.9 25.9 2.9 1.0 79.8 5.8 36.2 54.8 21.9 22.5 48.8 91.9 21.9 54.1 65.4 78.1 78.5
Vanilla 45.3 87.4 31.2 1.7 14.0 80.1 6.1 32.1 57.8 29.9 22.5 47.8 92.3 27.8 57.5 66.6 78.9 79.0
Our Model 45.7 87.8 33.5 2.4 4.8 78.5 8.5 43.0 57.5 19.2 22.0 48.4 92.7 36.0 58.9 67.7 79.3 79.2%50
Camera Proj. 46.4 88.1 31.5 2.7 4.5 80.7 8.5 37.7 57.2 31.9 23.5 51.9 93.0 34.7 59.6 67.8 79.4 79.1

Table 5.2: Evaluation of Model Performance Across Different Dataset Splits: Abbreviations are
used for class names due to space limitations. Models with the best performance in
each split are highlighted in bold. Detailed configurations of these models can be
found in the Experiment Settings Section.

In Table 5.2, we present a comparative analysis of all three models across the various
dataset splits previously introduced. Each model was trained for 50 epochs 3 times to
overcome randomness caused by weight initialization. Our final model and the camera
projection model were trained with an additional 0.5 weighted feature loss. Apart from
this distinction, the configurations for these models were aligned with those of the
vanilla model, as detailed in the Baseline Section. The first column of the table is the
dataset splits, while the second and third columns provide metrics on the mIoU and

51

5 Evaluation

pixel accuracy, respectively. The subsequent columns detail the IoU for each specific
class. Due to constraints in page width, class names have been abbreviated. The full
names of these classes are barrier, bicycle, bus, car, construction vehicle, motorcycle,
pedestrian, traffic cone, trailer, truck, drivable surface, flat & other, sidewalk, terrain,
manmade, and vegetation. In our analysis, the best-performing models for each dataset
split are highlighted in bold for easy identification.

Our analysis reveals that both our model and the camera projection model outper-
formed the vanilla model in terms of mIoU and accuracy. Interestingly, the camera
projection model showed better performance in mIoU and accuracy across different
splits of the dataset compared to our model. These outcomes were unexpected, as we
hypothesized that learning from DINO features across all points in the LiDAR scans, as
opposed to only those within the camera’s view, would be more advantageous. This
assumption was based on the premise that incorporating information from all points
in our NeRF models should enhance performance in evaluation metrics. We did not
observe a significant improvement in evaluation metrics, particularly in smaller dataset
splits. This outcome was surprising as we expected a more noticeable improvement due
to the ratio between used labeled and unlabeled data. However, the increase in mIoU
was found to be almost uniform across each split.

In the following paragraphs, we will dive into the results of each model. After this, we
will discuss potential reasons for these outcomes, exploring various factors that might
have influenced the performance of the models.

The camera projection model demonstrates consistently high performance across all
data splits, with the highest mIoU scores noticeable in all splits. Additionally, this model
generally achieves the highest, or nearly the highest, accuracy levels in all these splits.
Notably, its performance is noteworthy in certain classes such as ’bicycle’, ’drivable
surface’, and ’sidewalk’, where it often achieves the top IoU scores in all data splits.
Moreover, the model shows strong results in the ’car’, ’cone’, ’truck’, and ’trail’ classes,
especially notable in the larger data splits. This overall performance emphasizes the
camera projection model’s effectiveness in various aspects of class prediction and dataset
sizes.

Our model shows several improvements over the vanilla model. Its mIoU and accuracy
scores typically fall between the vanilla and camera projection models. Notably, in the
’car’ and ’sidewalk’ classes within the 1% data split, our model outperforms the other
models, showcasing its proficiency in these specific categories. Furthermore, in the
larger 50% data split, it achieves the highest IoU for the ’barrier’, ’motorcycle’, and
’flat & other’ classes. This varied performance across different classes and data splits
highlights the strengths of our model in certain areas.

The vanilla model, while not the best in overall performance, demonstrates competitive
results in specific classes. It is particularly effective in predicting ’bus’ and ’pedestrian’
classes across all data splits. In these categories, the vanilla model often achieves the
highest IoU scores, highlighting its strength in identifying these classes. This consistent
performance in ’bus’ and ’pedestrian’ classes indicates that the vanilla model has specific

52

5.3 Final model

areas of proficiency.

5.3.2 Potential Reasons for Results

To understand the performance of our model, it is essential to consider several key
factors. The following reasons offer insight into these results.

The most possible reason for the observed performance variations among the models
could be linked to the limitations of NeRFs in learning RGB and DINO features for
moving objects, as evidenced in our findings. As illustrated in Figure 5.5, there is a
notable difference in the ability to capture features for moving objects between directly
extracted DINO features from RGB images and those obtained through our NeRFs.
The static nature of RGB images allows for more effective feature extraction of moving
objects, which is not the case with our NeRFs. In Table 5.2, we can observe the effect of
this limitation on the performance of our model, particularly in dynamic classes such as
’bicycle’ and ’pedestrian’, where it underperforms. In contrast, for static classes like ’flat
& other’, ’barrier’, and ’sidewalk’, our model demonstrates better performance, aligning
with expectations. This factor is a crucial consideration in understanding the strengths
and limitations of our model in various class predictions. A potential solution for this
challenge is proposed in the Conclusion and Future Work Section.

Another potential factor affecting the performance of our model could be the use of
COLMAP for pose estimation. The process of calculating poses with COLMAP may
have resulted in inaccuracies in pose estimation. These inaccuracies, in turn, could lead
to the learning of insufficient RGB and DINO features. This aspect is particularly critical
because the accuracy of pose estimation directly impacts the quality of the data used
for training the model. If the poses are not accurately calculated, the model may not
effectively learn the correct features, leading to non-optimal performance, especially in
classes where precise spatial orientation and positioning are crucial. Therefore, some
defects in pose estimation using COLMAP could have played a role in the observed
performance of our model.

A further reason for the varying performance of our model could be linked to the
optimization of some NeRF scenes. The volume or complexity of certain scenes might
have led to non-optimal optimization, therefore affecting the learning of sufficient
DINO features. This issue is evident in the some of rendered RGB images and DINO
features from NeRFs, as shown in Figure 5.6. This figure reveals defects in the renders,
particularly noticeable in classes like ’motorcycles’ and ’roads’. Additionally, Figures 5.7
and 5.8 provide further insight, showing that the camera projection model tends to learn
features more effectively than our NeRF-based model. This comparison suggests that
the method of feature extraction and learning in the camera projection Model is more
robust in capturing and representing the necessary features, particularly in complex
scenes. This aspect emphasizes the potential limitations of NeRFs in certain scenarios
and their impact on the model’s overall performance.

Another likely reason for the limited improvement in our model’s performance metrics

53

5 Evaluation

is the formatting of our training dataset, which was focused on mostly static scenes. This
restriction likely restricted the model’s ability to learn from and adapt to more dynamic
or crowded scenes. Training on static scenarios can degrade the model’s generalization
capabilities, especially when later evaluated on diverse scenes with varying levels of
activity.

Figure 5.5: Example of Moving Objects Within the Scene. PCA applied for feature visualizations.

Figure 5.6: Examples of RGB Images from Trained NeRF Models

In Figures 5.7 and 5.8, our goal is to visualize the feature supervision given to the
models and how they learn these features. Both our model and the camera projection
model were effective in capturing the input features, but the camera projection model
showed slightly higher success in learning the provided features. For both models,
there is a clear correlation between the learned features and the objects present in the
scene. Classes such as ’cars’, ’walls’, and ’roads’ are distinctly distinguishable from
other objects, indicating the models’ ability to differentiate between various features.
This ability is further highlighted in Figures 5.9 and 5.10 which are example scenes from
the validation dataset. Despite this, the cues and relationships learned from the training
data are still evident, demonstrating the models’ capacity to generalize in learning

54

5.3 Final model

features.
Also, we compare the output DDCM features of the Cylinder3D model which is

directly related to predicting semantic segmentation labels, Figures 5.11 and 5.12 demon-
strate improvements obtained by both our model and the camera projection model.
Feature supervision leads to more uniform and distinct features for each object type in
the scene, indicating improved segmentation accuracy.

Figure 5.7: Example Scans from the Training Dataset: The models are trained with a 50% split
of the dataset. PCA visualizations shown in these images showcase the supervision
data for both models, along with the outputs generated by the network’s feature
head.

55

5 Evaluation

Figure 5.8: Example Scans from the Training Dataset: The models are trained with a 50% split
of the dataset. PCA visualizations shown in these images showcase the supervision
data for both models, along with the outputs generated by the network’s feature
head.

Figure 5.9: Example Scans from the Validation Dataset: The models are trained with a 50%
split of the dataset. PCA visualizations shown in these images showcase the outputs
generated by the network’s feature head.

56

5.3 Final model

Figure 5.10: Example Scans from the Validation Dataset: The models are trained with a 50%
split of the dataset. PCA visualizations shown in these images showcase the
outputs generated by the network’s feature head.

57

5 Evaluation

Figure 5.11: The images illustrate PCA visualizations of the output from the Cylinder3D model,
used for calculating logits in semantic segmentation. The first two rows feature
examples from the training dataset, while the final two rows are from the validation
dataset. Models are trained with a 50% split of the dataset.

58

5.3 Final model

Figure 5.12: The images illustrate PCA visualizations of the output from the Cylinder3D model,
used for calculating logits in semantic segmentation. The first two rows feature
examples from the training dataset, while the final two rows are from the validation
dataset. Models are trained with a 50% split of the dataset.

59

6 Conclusion and Future Work

6.1 Conclusion

Semantic segmentation is a challenging task, especially in the context of robotics and
autonomous driving. The task requires high-precision classification at the pixel level,
which becomes even more complex when extended to three dimensions. In 3D semantic
segmentation, the sparsity of 3D data adds an extra layer of difficulty, making accurate
segmentation a challenging task. Traditionally, most 3D semantic segmentation methods
depend on supervised learning, which is heavily dependent on the availability of
labeled data. However, labeling 3D data is a labor-intensive and time-consuming
process. In contrast, acquiring unlabeled data is relatively straightforward and less
resource-intensive.

In this thesis, we addressed the significant challenge of reducing reliance on exten-
sively labeled datasets in the training of 3D LiDAR semantic segmentation models.
Our research specifically focused on integrating novel approaches such as NeRF and
foundation models with the 3D semantic segmentation model to overcome this challenge.
Our proposed solution, a novel self-supervised 3D semantic segmentation approach,
directly addresses these issues. Our model leverages the surplus of unlabeled data by
training scene-specific NeRFs with images and foundation models. This is achieved by
extracting point-wise features from NeRFs, which allows our model to supervise the 3D
semantic segmentation process effectively. This innovative approach not only avoids the
need for extensive labeled data but also harnesses the potential of available unlabeled
data.

The dataset selection for our project was a critical process, particularly due to the
requirements of learning scene-wise NeRFs and the usage of a NeRF model optimized
for static scenes. Working within the autonomous driving domain, our focus was on
datasets that offer both camera and labeled LiDAR data. After a detailed review, we
chose the nuScenes dataset for its comprehensive six-camera setup, which captures a
360-degree view around the ego vehicle. This dataset provided us with the essential
RGB and LiDAR data for each scene, aligning perfectly with the requirements of our
project.

Using the LERF model, we trained 113 NeRF scenes and extracted DINO features
from 1456 LiDAR scans. These extracted features served as unlabeled supervision
for training a general self-supervised 3D semantic segmentation model, which was a
Cylinder3D model with an additional feature head. To evaluate the performance of
our model, we conducted tests using the validation subset of the nuScenes dataset.
For a comprehensive performance comparison, we also trained the Cylinder3D model

61

6 Conclusion and Future Work

solely with labeled data and developed a projection-based model. This comprehensive
approach allowed us to gain a deep understanding of the strengths and limitations of
our model in the context of common methodologies.

In the Evaluation Section, we outlined our experimental setup and conducted an
ablation study. We tested with various splits of labeled data to assess the impact of
labeled-unlabeled data ratios on training. Our results showed that our proposed method
outperformed the baseline, yet it was surpassed by the projection method. To better
understand these outcomes, we compared the learned features of both models through
visualizations. The observed performance variations in the models could be due to
several potential reasons. Firstly, the limitations of NeRFs in learning RGB and DINO
features for moving objects, as indicated by the difference in feature capture ability
between directly extracted DINO features from RGB images and those obtained through
NeRFs. Secondly, the use of COLMAP for pose estimation might have resulted in errors,
impacting the learning of accurate RGB and DINO features. Moreover, the optimization
of some NeRF scenes could have been non-optimal, affecting the learning of sufficient
DINO features, especially in complex scenes. Finally, the training dataset’s focus on
mostly static scenes likely limited the model’s ability to adapt to dynamic or crowded
environments, affecting its generalization capabilities.

Our research answers the proposed research question by demonstrating how the
integration of NeRF and foundation models can effectively minimize the necessity of
extensively labeled data in training state-of-the-art 3D LiDAR semantic segmentation
models, thereby contributing a novel perspective to the field of autonomous driving
technology.

6.2 Future Work

In this section, we outline potential future works for this thesis. These include the
exploration of dynamic scenes, which could significantly enhance the use of the whole
nuScenes dataset. Another aspect is experimenting with various 2D self-supervised fea-
ture extractors, potentially offering different representations. Additionally, investigating
different architectures for volumetric space representation could lead to improvements
in model performance. Lastly, instead of using per-point DINO features, utilizing
per-cylindrical voxel features might offer another approach to feature extraction.

6.2.1 Incorporating Dynamic Scenes

Our work focuses on almost static scenes with minimum dynamic objects, but there
is significant potential in expanding this to include dynamic scenes. Several existing
techniques offer promising methods for this expansion. For instance, in projects such
as Block-NeRF [65] and Panoptic NeRF [41], dynamic scenes have been successfully
incorporated by employing masking strategies for moving objects using 3D bboxes.
Block-NeRF approaches this by ignoring moving objects during training, a method

62

6.2 Future Work

that may not align with our objectives. On the other hand, Panoptic NeRF adopts a
more fitting approach for our needs, training separate MLP heads for moving objects
and the static background, using masking techniques. This method could potentially
allow our model to train on a broader range of scenes. However, it also introduces its
own set of challenges, such as the need for a self-supervised mask extractor to extract
per-dynamic object masks. While these techniques offer techniques to include dynamic
scenes, they have not been explored within the scope of our thesis and present an
interesting direction for future research.

6.2.2 Different Self-Supervised Feature Extractors

In the field of computer vision, with advancements in hardware technology, researchers
are continuously developing new techniques for self-supervised feature extraction
tasks. These models present opportunities for feature extraction. Exploring whether
these new models can outperform the performance of the currently used model in our
work is a promising area for future research. Improved feature extraction capabilities
could directly enhance the quality of features derived from NeRFs. This approach has
the potential to enhance the 3D semantic segmentation model by enabling it to learn
high-quality features, therefore improving the overall performance of the segmentation
process.

6.2.3 Different Architecture for Volumetric Space

Our approach centers the forward-moving ego vehicle on the z-axis within a cubic space.
However, this configuration may not be the most efficient, particularly considering that
our dataset mostly contains forward-moving scenes of 20-second durations. A possible
development might be the development of a volumetric space tailored to forward-
moving datasets. For instance, a rectangular volumetric space could potentially learn
the entire scene within a single NeRF model while maintaining the same volumetric
space. Such an architecture could offer a more efficient representation of the type of data
we are working with, potentially enhancing the overall effectiveness of the model. Block
NeRF addresses this challenge by training multiple overlapping NeRFs to represent
large-scale environments. It decomposes a large scene into smaller segments, each
represented by an individually trained NeRF, and then renders the entire scene by
seamlessly integrating these overlapping NeRFs.

6.2.4 Using Per-Cylindrical Voxel Features

Our 3D model samples points from cylindrical voxels, concatenating them with cor-
responding point features, and then computing a per-point feature loss for the DINO
feature head. An alternative strategy could involve calculating the center coordinates
of each cylindrical voxel. For each center, we would then query the respective NeRF
model to obtain DINO features. This process would shift the focus to calculating a

63

6 Conclusion and Future Work

per-voxel loss for the DINO feature head, rather than a per-point loss. Since the mIoU
and accuracy losses in our model are computed on a per-voxel basis, this approach
aligns with these losses. By using a per-voxel strategy for DINO feature learning, there
is potential to enhance the overall performance of the model.

64

Abbreviations

TUM Technical University of Munich

NeRF Neural Radiance Fields

CNN Convolutional Neural Network

ViT Vision Transformer

MLP Multilayer Perceptron

DDCM Dimension-Decomposition based Context Modeling

mIoU mean-intersection-over-union

SGD Stochastic Gradient Descent

IoU Intersection-over-Union

MSE Mean Squared Error

PCA Principal Component Analysis

SSC semantic scene sompletion

LiDAR Light Detection and Ranging

DINO DIstillation with NO labels

CLIP Contrastive Language-Image Pretraining

LERF Language Embedded Radiance Fields

65

List of Figures

1.1 Example visualization of images and their DINO features. PCA applied for
feature visualizations. 2

1.2 3D Visualization of Extracted DINO Features from Our NeRF Models. PCA
applied for feature visualizations. 3

3.1 An overview of the ViT model. This figure is directly sourced from [25]. 13
3.2 An overview of contrastive training of CLIP model, as depicted in this figure

directly sourced from [49]. 16
3.3 An overview of the NeRF scene representation and its differentiable rendering

process, as depicted in this figure directly sourced from [13]. 16
3.4 Nerfacto Model Pipeline [59]. 19
3.5 LERF model pipeline [15]. 20
3.6 Cylinder3D Network Pipeline [16]. 22

4.1 Overview of our approach: In Stage 1, scene-wise NeRFs are trained using
images and their corresponding features, followed by the extraction of features
for each LiDAR scan in the training dataset. Stage 2 involves the training of a
generalized Self-Supervised LiDAR Semantic Segmentation Model, using the
extracted features. 27

4.2 Example Screenshots of RGB Renders from Trained NeRF Models 31
4.3 3D Visualization of Extracted DINO Features from Our NeRF Models. PCA

applied for feature visualizations. 32
4.4 Screenshots from Nerfstudio’s Viewer: The top left shows the rendered RGB

image. The top right displays the rendered DINO features. The bottom left
illustrates the projection of labeled points within the ’Front Left Camera’ into
our NeRF world. The bottom right presents the corresponding DINO features of
these projected points. PCA applied for feature visualizations. 35

4.5 Projection of LiDAR Points into NeRF World with Learned DINO Features. PCA
applied for feature visualizations. 35

4.6 Overview of Our 3D Semantic Segmentation Model Pipeline: The pipeline
begins with the input of LiDAR points and extracted DINO features from our
NeRF models into the Cylinder3D backbone. Following the backbone, the
pipeline includes two components: the Semantic Head, responsible for predicting
semantic labels, and the Feature Head, focused on predicting DINO features. . . 36

4.7 3D Visualization of Features Predicted by the Feature Head in Our 3D Semantic
Segmentation Model . 39

67

List of Figures

5.1 Overview of the Camera Setup in the Waymo Dataset [7] 42
5.2 Overview of the Camera Setup in the NuScenes Dataset [6] 43
5.3 Annotated LiDAR Scan: Example from nuScenes Dataset 44
5.4 The Relationship Between Feature Weight and mIoU. 51
5.5 Example of Moving Objects Within the Scene. PCA applied for feature visual-

izations. 54
5.6 Examples of RGB Images from Trained NeRF Models 54
5.7 Example Scans from the Training Dataset: The models are trained with a 50%

split of the dataset. PCA visualizations shown in these images showcase the
supervision data for both models, along with the outputs generated by the
network’s feature head. 55

5.8 Example Scans from the Training Dataset: The models are trained with a 50%
split of the dataset. PCA visualizations shown in these images showcase the
supervision data for both models, along with the outputs generated by the
network’s feature head. 56

5.9 Example Scans from the Validation Dataset: The models are trained with a 50%
split of the dataset. PCA visualizations shown in these images showcase the
outputs generated by the network’s feature head. 56

5.10 Example Scans from the Validation Dataset: The models are trained with a 50%
split of the dataset. PCA visualizations shown in these images showcase the
outputs generated by the network’s feature head. 57

5.11 The images illustrate PCA visualizations of the output from the Cylinder3D
model, used for calculating logits in semantic segmentation. The first two rows
feature examples from the training dataset, while the final two rows are from
the validation dataset. Models are trained with a 50% split of the dataset. 58

5.12 The images illustrate PCA visualizations of the output from the Cylinder3D
model, used for calculating logits in semantic segmentation. The first two rows
feature examples from the training dataset, while the final two rows are from
the validation dataset. Models are trained with a 50% split of the dataset. 59

68

List of Tables

5.1 mIoU and Accuracy Metrics for the Ablation Study. 50
5.2 Evaluation of Model Performance Across Different Dataset Splits: Abbreviations

are used for class names due to space limitations. Models with the best per-
formance in each split are highlighted in bold. Detailed configurations of these
models can be found in the Experiment Settings Section. 51

69

Bibliography

[1] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and
algorithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 163–168.
doi: 10.1109/IVS.2011.5940562.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8,
pp. 58 443–58 469, 2020. doi: 10.1109/ACCESS.2020.2983149.

[3] E. Ahmed, A. Saint, A. Shabayek, K. Cherenkova, R. Das, G. Gusev, D. Aouada,
and B. Ottersten, Deep learning advances on different 3d data representations: A survey,
Aug. 2018.

[4] S. Hao, Y. Zhou, and Y. Guo, “A brief survey on semantic segmentation with
deep learning,” Neurocomputing, vol. 406, pp. 302–321, 2020, issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2019.11.118.

[5] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep learning: A
review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11,
pp. 3212–3232, 2019. doi: 10.1109/TNNLS.2018.2876865.

[6] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous
driving,” in CVPR, 2020.

[7] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y.
Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev,
S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and
D. Anguelov, “Scalability in perception for autonomous driving: Waymo open
dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2020.

[8] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J.
Gall, “SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR
Sequences,” in Proc. of the IEEE/CVF International Conf. on Computer Vision (ICCV),
2019.

[9] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite,” in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 3354–3361.

71

Bibliography

[10] L. Kong, J. Ren, L. Pan, and Z. Liu, “Lasermix for semi-supervised lidar semantic
segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 21 705–21 715.

[11] X. Yan, J. Gao, C. Zheng, C. Zheng, R. Zhang, S. Cui, and Z. Li, “2dpass: 2d priors
assisted semantic segmentation on lidar point clouds,” in European Conference on
Computer Vision, Springer, 2022, pp. 677–695.

[12] K. Genova, X. Yin, A. Kundu, C. Pantofaru, F. Cole, A. Sud, B. Brewington, B.
Shucker, and T. Funkhouser, “Learning 3d semantic segmentation with only 2d
image supervision,” in 2021 International Conference on 3D Vision (3DV), 2021,
pp. 361–372. doi: 10.1109/3DV53792.2021.00046.

[13] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,
“Nerf: Representing scenes as neural radiance fields for view synthesis,” in ECCV,
2020.

[14] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin,
“Emerging properties in self-supervised vision transformers,” in Proceedings of the
International Conference on Computer Vision (ICCV), 2021.

[15] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik, “Lerf: Language
embedded radiance fields,” in International Conference on Computer Vision (ICCV),
2023.

[16] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and D. Lin, “Cylindrical
and asymmetrical 3d convolution networks for lidar segmentation,” arXiv preprint
arXiv:2011.10033, 2020.

[17] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Gläser, F. Timm, W.
Wiesbeck, and K. Dietmayer, “Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods, and challenges,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1341–1360, 2021.
doi: 10.1109/TITS.2020.2972974.

[18] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, M. Jagersand, and H. Zhang, “A
comparative study of real-time semantic segmentation for autonomous driving,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Jun. 2018.

[19] H. Wang, Y. Chen, Y. Cai, L. Chen, Y. Li, M. A. Sotelo, and Z. Li, “Sfnet-n: An
improved sfnet algorithm for semantic segmentation of low-light autonomous
driving road scenes,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 11, pp. 21 405–21 417, 2022. doi: 10.1109/TITS.2022.3177615.

[20] A. Milioto and C. Stachniss, “Bonnet: An open-source training and deployment
framework for semantic segmentation in robotics using cnns,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 7094–7100. doi: 10.1109/
ICRA.2019.8793510.

72

Bibliography

[21] I. Alonso, L. Riazuelo, and A. C. Murillo, “Mininet: An efficient semantic segmen-
tation convnet for real-time robotic applications,” IEEE Transactions on Robotics,
vol. 36, no. 4, pp. 1340–1347, 2020. doi: 10.1109/TRO.2020.2974099.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,
Eds., Cham: Springer International Publishing, 2015, pp. 234–241, isbn: 978-3-319-
24574-4.

[23] M. Z. Khan, M. K. Gajendran, Y. Lee, and M. A. Khan, “Deep neural architectures
for medical image semantic segmentation: Review,” IEEE Access, vol. 9, pp. 83 002–
83 024, 2021. doi: 10.1109/ACCESS.2021.3086530.

[24] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2015, pp. 3431–3440.
doi: 10.1109/CVPR.2015.7298965.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,”
ICLR, 2021.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[27] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S.
Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,”
arXiv:2304.02643, 2023.

[28] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li, “Deep learning
for lidar point clouds in autonomous driving: A review,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3412–3432, 2021. doi:
10.1109/TNNLS.2020.3015992.

[29] X. Lai, Y. Chen, F. Lu, J. Liu, and J. Jia, “Spherical transformer for lidar-based 3d
recognition,” in CVPR, 2023.

[30] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu, “Pointseg: Real-time semantic segmen-
tation based on 3d lidar point cloud,” ArXiv, vol. abs/1807.06288, 2018.

[31] A. Ando, S. Gidaris, A. Bursuc, G. Puy, A. Boulch, and R. Marlet, “Rangevit: To-
wards vision transformers for 3d semantic segmentation in autonomous driving,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2023, pp. 5240–5250.

[32] A. Jhaldiyal and N. Chaudhary, “Semantic segmentation of 3d lidar data using
deep learning: A review of projection-based methods,” Applied Intelligence, vol. 53,
no. 6, pp. 6844–6855, 2023, issn: 1573-7497. doi: 10.1007/s10489-022-03930-5.

73

Bibliography

[33] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Searching efficient
3d architectures with sparse point-voxel convolution,” in European Conference on
Computer Vision, 2020.

[34] Y. Hou, X. Zhu, Y. Ma, C. C. Loy, and Y. Li, “Point-to-voxel knowledge distillation
for lidar semantic segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 8479–8488.

[35] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R.
Martin-Brualla, “Nerfies: Deformable neural radiance fields,” ICCV, 2021.

[36] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-NeRF: Neural
Radiance Fields for Dynamic Scenes,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

[37] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin, “Inerf:
Inverting neural radiance fields for pose estimation,” Dec. 2020.

[38] S. Zhi, T. Laidlow, S. Leutenegger, and A. Davison, “In-place scene labelling and
understanding with implicit scene representation,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2021.

[39] S. Liu, X. Zhang, Z. Zhang, R. Zhang, J.-Y. Zhu, and B. Russell, “Editing conditional
radiance fields,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2021.

[40] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives
with a multiresolution hash encoding,” ACM Transactions on Graphics, vol. 41, no. 4,
pp. 1–15, Jul. 2022. doi: 10.1145/3528223.3530127.

[41] A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. Guibas, A. Tagliasacchi,
F. Dellaert, and T. Funkhouser, “Panoptic Neural Fields: A Semantic Object-Aware
Neural Scene Representation,” in CVPR, 2022.

[42] G. Hinton, J. Dean, and O. Vinyals, “Distilling the knowledge in a neural network,”
in NeurIPS, Mar. 2014, pp. 1–9.

[43] C. Sautier, G. Puy, S. Gidaris, A. Boulch, A. Bursuc, and R. Marlet, “Image-to-lidar
self-supervised distillation for autonomous driving data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022,
pp. 9891–9901.

[44] S. Kobayashi, E. Matsumoto, and V. Sitzmann, “Decomposing nerf for editing
via feature field distillation,” in Advances in Neural Information Processing Systems,
vol. 35, 2022.

[45] V. Tschernezki, I. Laina, D. Larlus, and A. Vedaldi, “Neural feature fusion fields:
3D distillation of self-supervised 2D image representations,” in Proceedings of the
International Conference on 3D Vision (3DV), 2022.

[46] K. Blomqvist, L. Ott, J. J. Chung, and R. Siegwart, Baking in the feature: Accelerating
volumetric segmentation by rendering feature maps, 2022. arXiv: 2209.12744 [cs.CV].

74

Bibliography

[47] J. Ye, N. Wang, and X. Wang, “Featurenerf: Learning generalizable nerfs by
distilling pre-trained vision foundation models,” arXiv preprint arXiv:2303.12786,
2023.

[48] Z. Fan, P. Wang, Y. Jiang, X. Gong, D. Xu, and Z. Wang, Nerf-sos: Any-view self-
supervised object segmentation on complex scenes, 2022. doi: 10.48550/ARXIV.2209.
08776.

[49] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable
visual models from natural language supervision,” in ICML, 2021.

[50] A. Hayler, F. Wimbauer, D. Muhle, C. Rupprecht, and D. Cremers, “S4c: Self-
supervised semantic scene completion with neural fields,” arXiv preprint arXiv:2310.07522,
2023.

[51] A.-Q. Cao and R. de Charette, “Scenerf: Self-supervised monocular 3d scene
reconstruction with radiance fields,” in ICCV, 2023.

[52] F. Wimbauer, N. Yang, C. Rupprecht, and D. Cremers, “Behind the scenes: Density
fields for single view reconstruction,” arXiv preprint arXiv:2301.07668, 2023.

[53] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural radiance fields
from one or few images,” in CVPR, 2021.

[54] A. Trevithick and B. Yang, “Grf: Learning a general radiance field for 3d scene
representation and rendering,” in arXiv:2010.04595, 2020.

[55] S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. M. Sajjadi, E. Pot, A.
Tagliasacchi, and D. Duckworth, Nesf: Neural semantic fields for generalizable semantic
segmentation of 3d scenes, 2021. arXiv: 2111.13260 [cs.CV].

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

[57] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998. doi: 10.1109/5.726791.

[58] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P.
Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields,” ICCV, 2021.

[59] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang, A. Kristoffersen, J. Austin,
K. Salahi, A. Ahuja, D. McAllister, and A. Kanazawa, “Nerfstudio: A modular
framework for neural radiance field development,” in ACM SIGGRAPH 2023
Conference Proceedings, ser. SIGGRAPH ’23, 2023.

[60] T. Müller, tiny-cuda-nn, version 1.7, Apr. 2021.

75

Bibliography

[61] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” arXiv preprint arXiv:1612.00593, 2016.

[62] M. Berman, A. Rannen Triki, and M. B. Blaschko, “The lovász-softmax loss: A
tractable surrogate for the optimization of the intersection-over-union measure
in neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4413–4421.

[63] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[64] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view
selection for unstructured multi-view stereo,” in European Conference on Computer
Vision (ECCV), 2016.

[65] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. Srinivasan, J. T. Barron,
and H. Kretzschmar, “Block-NeRF: Scalable large scene neural view synthesis,”
arXiv, 2022.

[66] O. Unal, D. Dai, and L. Van Gool, “Scribble-supervised lidar semantic segmen-
tation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2022, pp. 2697–2707.

[67] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti,
T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kundurthy,
K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev, Laion-5b: An open large-
scale dataset for training next generation image-text models, 2022. arXiv: 2210.08402
[cs.CV].

[68] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), 2017, pp. 464–472.
doi: 10.1109/WACV.2017.58.

76

